Answer:
Explanation:
Pair 2.50g of O₂ and 2.50g of N₂
The atoms sample with the largest number of moles since the masses are the same would be the one with lowest molar mass according the the equation below:
Number of moles = 
Atomic mass of O = 16g and N = 14g
Molar mass of O₂ = 16 x 2 = 32gmol⁻¹
Molar mass of N₂ = 14 x 2 = 28gmol⁻¹
Number of moles of O₂ =
= 0.078mole
Number of moles of N₂ =
= 0.089mole
We see that N₂ has the largest number of moles
Answer:
the answer is b, 0.89
Explanation:
A cube has a height of 8 cm and a mass of 457 g. What is its density?
a. 233,984 g/cm
b. 0.89g/cm3
c. 1.12 g/cm3
Density = mass/volume
the volume of the cube is 8X8X8=512cm3
the mass is 457 gm
the density is 457/512 = 0.889 gm/cm3
the answer is b, 0.89
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
<span>In chemistry, a catalyst can speed up the reaction (or make it initiate easier) by altering the activation energy, lowering it enough to allow the reactants to react more easily. Some negative catalysts or inhibitors can do the same by increasing the activation energy.
</span>
The answer choice is going to be B.