12 HClO₄ + 1 P₄O₁₀ → 4 H₃PO₄ + 6 Cl₂O₇
<h3>Explanation</h3>
Balance by the conservation of atoms.
Assign coefficient <em>1 </em>to the species with the largest number of elements and atoms. H₃PO₄ contains three elements. Each of its molecule contains eight atoms, that's two more than the six atoms in a HClO₄ molecule. Start by assigning H₃PO₄ a coefficient of <em>1</em>.
? HClO₄ + ? P₄O₁₀ → <em>1</em> H₃PO₄ + ? Cl₂O₇
There are now three H atoms, one P atom on the product side. H₃PO₄ is the only product that contains H and P atoms. As a result, there should be the same number of H and P atoms on the reactant side.
- Among all reactants, only HClO₄ contains H atoms. Each HClO₄ molecule contains one H atom. Three H atoms correspond to three HClO₄ molecule.
- Among all reactants, only P₄O₁₀ contains P atoms. Each P₄O₁₀ molecule contains four P atoms. One P atom corresponds to 1/4 of a P₄O₁₀ molecule.
Thus
<em>3</em> HClO₄ + <em>1/4</em> P₄O₁₀ → <em>1</em> H₃PO₄ + ? Cl₂O₇
There are three Cl atoms in three HClO₄ molecules. HClO₄ is the only species that contains Cl among all reactants. There are three Cl atoms on the reactant side and shall be the same number of Cl atoms on the product side.
- Cl₂O₇ is the only molecule that contains Cl among the products. Each Cl₂O₇ molecule contains two Cl atoms. Three Cl atoms will correspond to 3/2 Cl₂O₇ molecules.
<em>3</em> HClO₄ + <em>1/4</em> P₄O₁₀ → <em>1</em> H₃PO₄ + <em>3/2</em> Cl₂O₇
Multiply both sides by the least common multiple of the denominators to eliminate the fraction. The least common multiple in this case is four.
12 HClO₄ + 1 P₄O₁₀ → 4 H₃PO₄ + 6 Cl₂O₇
PH + poH = 14
6.2 +poH = 14
poH = 7.8
NH3 = 14 +3*1=17 g/mol
Mass = mol * molar mass = 0.687 * 17= 11.679 g
Can u mark it brainliest?
This lesson is the first in a three-part series that addresses a concept that is central to the understanding of the water cycle—that water is able to take many forms but is still water. This series of lessons is designed to prepare students to understand that most substances may exist as solids, liquids, or gases depending on the temperature, pressure, and nature of that substance. This knowledge is critical to understanding that water in our world is constantly cycling as a solid, liquid, or gas.
In these lessons, students will observe, measure, and describe water as it changes state. It is important to note that students at this level "...should become familiar with the freezing of water and melting of ice (with no change in weight), the disappearance of wetness into the air, and the appearance of water on cold surfaces. Evaporation and condensation will mean nothing different from disappearance and appearance, perhaps for several years, until students begin to understand that the evaporated water is still present in the form of invisibly small molecules." (Benchmarks for Science Literacy<span>, </span>pp. 66-67.)
In this lesson, students explore how water can change from a solid to a liquid and then back again.
<span>In </span>Water 2: Disappearing Water, students will focus on the concept that water can go back and forth from one form to another and the amount of water will remain the same.
Water 3: Melting and Freezing<span> allows students to investigate what happens to the amount of different substances as they change from a solid to a liquid or a liquid to a solid.</span>