Sodium bicarbonate and acetic acid are not good substitute for sodium azide in airbags since the require more mass and produce less gas.
<h3>Which is the better chemical for an airbag?</h3>
The chemical equation for the production of nitrogen gas from sodium azide is given below:
1 mole or 66 go of sodium azide produces 3 moles or 67.2 L of nitrogen gas.
The equation for the production of carbon dioxide from sodium bicarbonate and acetic acid is given below:
- Na₂CO₃ + CH₃COOH → CH₃COONa + CO₂ + H₂O
1 mole, 106 g of Na₂CO₃ and 1 mole, 82 g of CH₃COOH are required to produce 1 mole or 22.4 L of CO₂.
The mass of sodium azide required is less than that of sodium bicarbonate and acetic acid required. Also, sodium azide produces a greater volume of gas. Therefore, sodium bicarbonate and acetic acid are not good substitute for sodium azide in airbags.
In conclusion, sodium azide is a better choice in airbags.
Learn more about airbags at: brainly.com/question/14954949
#SPJ1
<span>The normal dividing line for soluble/not soluble is 0.1 M.
If a substance, as a saturated solution at room temp and pressure, cannot form a solution concentration of 0.1 M, then it is considered insoluble.
The 0.1 M figure was selected because _most_ substances are either well above that value or well below. Some substances (calcium hydroxide is one? not sure) come close to the 0.1 M dividing line but there are only a very few.</span><span>
but most likely it wont mix</span>
Answer:
6.319857 * 10 to the power 7
Explanation:
The given data is as follows.
n = 1 mol, 
Q = 1500 J, R = 8.314 J/mol k
(a) 
And, according to the first law of thermodynamics

And, in an isothermal process the change in internal energy of the gas is zero.
Hence, 0 = Q - W
or, W = Q
Expression for work done in an isothermal process is as follows.
W = 
As W = Q, Hence expression for Q will also be given as follows.
Q = 
Now,

[/tex]\Delta S = nR ln \frac{V_{f}}{V_{i}}[/tex]
= 
= nR ln 2
= 
= 5.76 J/K
Therefore, change in entropy is 5.76 J/K.
(b) As, Q = 
= 
= nRT ln 2
T = 
= 
= 260.4 K
Therefore, temperature of the gas is 260.4 K.
Answer:
These predictions are likely to be valid and should be needed.
Explanation:
Meteorologist made predictions about weather of a particular area on the data they received from the satellite. Meteorology is a branch of science in which we study about the atmosphere. It is mainly used for the forecasting of weather and meteorologists are those people or scientists who study the weather and research on different scales or instruments of weather.