Answer:
The answer is "(5, -6)"
Step-by-step explanation:
Given:
The Pre-image line at point B is: (3, 4)
Solution:
![\ rx-axis \circ \ T2,2 (3,4) \\\\\Rightarrow \ rx-axis \ ( T2,2 (3,4) )\\\\ \Rightarrow \ rx-axis ( 5,6 ) \\\\ \Rightarrow (5, -6)\\](https://tex.z-dn.net/?f=%5C%20rx-axis%20%5Ccirc%20%5C%20%20T2%2C2%20%283%2C4%29%20%5C%5C%5C%5C%5CRightarrow%20%20%5C%20rx-axis%20%5C%20%28%20T2%2C2%20%283%2C4%29%20%29%5C%5C%5C%5C%20%5CRightarrow%20%5C%20rx-axis%20%28%205%2C6%20%20%29%20%5C%5C%5C%5C%20%5CRightarrow%20%20%285%2C%20-6%29%5C%5C)
The coordinates of B point is (5,-6).
The answer is A,
In a function, an x value can only be paired with one y value.
However, a y value and have multiple different x values, for example when you graph a constant/horizontal line.
Common factors include: 5 and 1
we know the blue and white paints are on a 1.5 : 5 ratio, thus, if we have a total of 16.25 gallons of paint to be split along that ratio, we can simply divide 16.25 by (1.5+5) and distribute accordingly.
![\bf \cfrac{blue}{white}\qquad \stackrel{ratio}{1.5:5}\qquad \cfrac{1.5}{5}~\hspace{5em}\cfrac{1.5\cdot \frac{16.25}{1.5+5}}{5\cdot \frac{16.25}{1.5+5}}\implies \cfrac{1.5\cdot \frac{16.25}{6.5}}{5\cdot \frac{16.25}{6.5}} \\\\\\ \cfrac{1.5\cdot 2.5}{5\cdot 2.5}\implies \cfrac{3.75}{12.5}\qquad \qquad \boxed{\stackrel{blue}{3.75}~:~\stackrel{white}{12.5}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7Bblue%7D%7Bwhite%7D%5Cqquad%20%5Cstackrel%7Bratio%7D%7B1.5%3A5%7D%5Cqquad%20%5Ccfrac%7B1.5%7D%7B5%7D~%5Chspace%7B5em%7D%5Ccfrac%7B1.5%5Ccdot%20%5Cfrac%7B16.25%7D%7B1.5%2B5%7D%7D%7B5%5Ccdot%20%5Cfrac%7B16.25%7D%7B1.5%2B5%7D%7D%5Cimplies%20%5Ccfrac%7B1.5%5Ccdot%20%5Cfrac%7B16.25%7D%7B6.5%7D%7D%7B5%5Ccdot%20%5Cfrac%7B16.25%7D%7B6.5%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1.5%5Ccdot%202.5%7D%7B5%5Ccdot%202.5%7D%5Cimplies%20%5Ccfrac%7B3.75%7D%7B12.5%7D%5Cqquad%20%5Cqquad%20%5Cboxed%7B%5Cstackrel%7Bblue%7D%7B3.75%7D~%3A~%5Cstackrel%7Bwhite%7D%7B12.5%7D%7D)
You can solve real-world and mathematical problems with numerical and algebraic equations and inequalities. Algebra can be applied to the temperature in different places that both change, height of a growing child over time, the speed of a car that changes over time (mph), and the age of people that increases over year. Algebra is used in parts of our everyday life, we just don’t realize it.