Answer:
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Step-by-step explanation:
The options are missing; However, I'll simplify the given expression.
Given
![\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B32x%5E3y%5E6%7D%7D%7B%5Csqrt%5B3%5D%7B2x%5E9y%5E2%7D%20%7D)
Required
Write Equivalent Expression
To solve this expression, we'll make use of laws of indices throughout.
From laws of indices ![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So,
gives

Also from laws of indices

So, the above expression can be further simplified to

Multiply the exponents gives

Substitute
for 32


From laws of indices

This law can be applied to the expression above;
becomes

Solve exponents


From laws of indices,
; So,
gives

The expression at the numerator can be combined to give

Lastly, From laws of indices,
; So,
becomes
![\frac{\sqrt[3]{(2y)}^{4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B%282y%29%7D%5E%7B4%7D%7D%7Bx%5E2%7D)
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Hence,
is equivalent to ![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Answer:3003
Step-by-step explanation:
14 choose 6 is 3003 because 14!/6!(14-6)!=9*10*11*12*13*14/6!=3003
Answer:
1832 miles
Step-by-step explanation:
First we need to find the angle between the routes of the planes.
If one is N30°W and the other is S45°W, we can find the angle between the routes with the following equation:
30 + angle + 45 = 180
angle = 105°
Then, we need to find the distance travelled by each plane, using the formula:
distance = speed * time
The time is 1.5 hours, so we have that:
distance1 = 800 * 1.5 = 1200 km
distance2 = 750 * 1.5 = 1125 km
Now, to find the distance between the planes, we can use the law of cosines:
distance^2 = 1200^2 + 1125^2 - 2*1200*1125*cos(105)
distance^2 = 3356214.43
distance = 1832 miles
<span>We are not told how often the interest is compounded, so assuming it is <em /><u><em>compounded yearly</em></u>, you need to keep $9.99 in the account to pay the fee.
<u><em>Explanation: </em></u>
Compound interest follows the formula A=p(1+r)^t,
where:
A is the total amount in the account,
p is the amount of principal,
r is the interest rate as a decimal number,
and t is the number of years.
<u>For our problem: </u>
A = 9.99,
p is unknown,
r = 0.018% = 0.00018,
and t=1.
<u>This gives us: </u>
9.99=p(1+0.00018)^1;
9.99=p(1.00018).
<u>Divide both sides by 1.00018: </u>
9.99=p.</span>
Answer:
1,025,400,000
Step-by-step explanation:
I hope this helped!