Answer:
a) 0.1587
b) 0.0475
c) 0.7938
Step-by-step explanation:
Let's start defining our random variable.
X : ''Thickness (in mm) of ancient prehistoric Native American pot shards discovered in a Hopi village''
X is modeled as a normal random variable.
X ~ N(μ,σ)
Where μ is the mean and σ is the standard deviation.
To calculate all the probabilities, we are going to normalize the random variable X.
We are going to call to the standard normal distribution ''Z''.
[(X - μ) / σ] ≅ Z
We normalize by subtracting the mean to X and then dividing by standard deviation.
We can find the values of probabilities for Z in a standard normal distribution table.
We are going to call Φ(A) to the normal standard cumulative distribution evaluated in a value ''A''
a)

Φ(-1) = 0.1587
b)


1 - Φ(1.666) = 1 - 0.9525 = 0.0475
c)

Φ(1.666) - Φ(-1) = 0.9525 - 0.1587 = 0.7938
Step-by-step explanation:
the answer is in the image above
The addition property of equality justifies this. You could also say that she simply subtracted 7, and then it would be the subtraction property of equality. This is the case because if you add or subtract (or multiply or divide) the same number on both sides of an equation, the equation will still be the same.
Hope it helps!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ The area is 169 square cm.
Find the value of each side (a square has 4 sides so divide by 4 ):
52/4 = 13
To find the area of a square, you only need 2 sides so multiply 2 sides:
13 x 13 = 139
Area = 139 square cm
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ
Answer:
a) ∝A ∈ W
so by subspace, W is subspace of 3 × 3 matrix
b) therefore Basis of W is
={
}
Step-by-step explanation:
Given the data in the question;
W = { A| Air Skew symmetric matrix}
= {A | A = -A^T }
A ; O⁻ = -O⁻^T O⁻ : Zero mstrix
O⁻ ∈ W
now let A, B ∈ W
A = -A^T B = -B^T
(A+B)^T = A^T + B^T
= -A - B
- ( A + B )
⇒ A + B = -( A + B)^T
∴ A + B ∈ W.
∝ ∈ | R
(∝.A)^T = ∝A^T
= ∝( -A)
= -( ∝A)
(∝A) = -( ∝A)^T
∴ ∝A ∈ W
so by subspace, W is subspace of 3 × 3 matrix
A ∈ W
A = -AT
A = ![\left[\begin{array}{ccc}o&a&b\\-a&o&c\\-b&-c&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Do%26a%26b%5C%5C-a%26o%26c%5C%5C-b%26-c%260%5Cend%7Barray%7D%5Cright%5D)
=
![+c\left[\begin{array}{ccc}0&0&0\\0&0&1\\0&-1&0\end{array}\right]](https://tex.z-dn.net/?f=%2Bc%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%260%5C%5C0%260%261%5C%5C0%26-1%260%5Cend%7Barray%7D%5Cright%5D)
therefore Basis of W is
={
}