1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
13

If x is not equal to 0 then u/x + 5u/x - u/5x = what?

Mathematics
2 answers:
gavmur [86]3 years ago
5 0
\frac{u}{x}+\frac{5u}{x}-\frac{u}{5x}=\frac{5u}{5x}+\frac{25u}{5x}-\frac{u}{5x}=\frac{5u+25u-u}{5x}=\frac{29u}{5x}
mixas84 [53]3 years ago
3 0
\frac{u}{x}+\frac{5u}{x}-\frac{u}{5x}=\frac{u+5u}{x}-\frac{u}{5x}=\frac{6u}{x}-\frac{u}{5x}=\frac{6u\times5}{x\times5}-\frac{u}{5x}\\\\=\frac{30u}{5x}-\frac{u}{5x}=\frac{30u-u}{5x}=\boxed{\frac{29u}{5x}}
You might be interested in
Which ordered pair is the solution to the system of equations?
d1i1m1o1n [39]
\begin{cases}-3x+4y=-20\\y=x-4\end{cases}\\\\\\-3x+4(x-4)=-20\\\\-3x+4x-16=-20\\\\x-16=-20\quad|+16\\\\x-16+16=-20+16\\\\\boxed{x=-4}\\\\\\y=x-4\\\\y=-4-4\\\\\boxed{y=-8}

Answer C.
4 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Square roots question??
cluponka [151]

√5²+2*√5*√3+√3²

5+7.7+3

15.7

3 0
3 years ago
Read 2 more answers
Will give brainliest!! Linda had a great week in basketball. In two games she scored a total 41 points and made 17 shots. If she
Ilia_Sergeevich [38]

Answer:

16 3 pointer shots 1 2 pointer shots

Step-by-step explanation:

I subtracted 3 pointers and did it 16 times and subtracted 2 one time

I hope I helped

8 0
2 years ago
Sample survey questions are usually read from a computer screen. In a computer-aided personal interview (CAPI), the interviewer
Salsk061 [2.6K]

Answer:

CASI

Step-by-step explanation:

In Statistics, sampling can be defined as a process used to collect or select data (objects, observations, or individuals) from a larger statistical population using specific procedures.

Sample survey questions are usually read from a computer screen. In a computer-aided personal interview (CAPI), the interviewer reads the questions and enters the responses. In a computer-aided self interview (CASI), the interviewer stands aside and the respondent reads the questions and enters responses. One method almost always shows a higher percent of subjects admitting use of illegal drugs.

This is because they get to interact with a computer rather than a human interviewer.

6 0
3 years ago
Other questions:
  • Hi!!!! Can someone please help me answer this math question??
    11·2 answers
  • "Five times the difference of twice a number and three,
    12·1 answer
  • 8 red beads, 6 yellow beads, 6 green beads. A green bead is drawn what is the reasonable prediction of how many times of the gre
    6·1 answer
  • In a quadrilateral, all angles add up to ................
    10·2 answers
  • What is the value for x?<br><br><br><br> Enter your answer in the box.<br><br> X=
    14·2 answers
  • Four bakers used the following amounts of flour and sugar in their favorite cake recipe. Which bakers use the same flour to suga
    8·1 answer
  • Calculate the mean of the given data set. You must show your work to receive all possible points.
    15·1 answer
  • |x + 71 - 2 = 8, what is the first step that must be done?
    5·1 answer
  • Question
    9·1 answer
  • Factorise the following expressions 5x^2-25xy​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!