Answer:
1.32 moles.
Explanation:
From the question given above, the following data were obtained:
Density of Al = 2.70 g/cm³
Volume of Al = 13.2 cm³
Number of mole of Al =.?
Next, we shall determine the mass of Al.
This can be obtained as follow:
Density of Al = 2.70 g/cm³
Volume of Al = 13.2 cm³
Mass of Al =?
Density = mass / volume
2.7 = mass of Al / 13.2
Cross multiply
Mass of Al = 2.7 × 13.2
Mass of Al = 35.64 g
Finally, we shall determine the number of mole of Al. This can be obtained as follow:
Mass of Al = 35.64 g
Molar mass of Al = 27 g/mol
Number of mole of Al =?
Mole = mass / molar mass
Number of mole of Al = 35.64 / 27
Number of mole of Al = 1.32 moles
Thus, 1.32 moles of aluminum are present in the block of the metal.
We have 1.2 kg of rust whithin 5 days.
the rate of reaction in grams per hour:
1.2 kg/5 day * 1000 g/kg * 1 day/24 hours = 10.0 grams/hour
hope this help
This balanced equation shows us the ratios of reactants and products, so for every 3 oxygen molecules, we see that 4 iron atoms react as well. The answer is 4.
Explanation:
As per Brønsted-Lowry concept of acids and bases, chemical species which donate proton are called Brønsted-Lowry acids.
The chemical species which accept proton are called Brønsted-Lowry base.
(a) 
is Bronsted lowry acid and
is its conjugate base.
is Bronsted lowry base and
is its conjugate acid.
(b)

is Bronsted lowry base and HCN is its conjugate acid.
is Bronsted lowry acid and
is its conjugate base.
(c)

is Bronsted lowry acid and
is its conjugate base.
Cl^- is Bronsted lowry base and HCl is its conjugate acid.
(d)

is Bronsted lowry acid and
is its conjugate base.
OH^- is Bronsted lowry base and
is its conjugate acid.
(e)

is Bronsted lowry base and OH- is its conjugate acid.
is Bronsted lowry acid and OH- is its conjugate base.
The balanced equation is Mg(s) + 2HCI(aq) = H2(g) + MgCI2 (aq)