Answer:
its x=2
Step-by-step explanation:
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Responder:
$ 7540
Explicación paso a paso:
Dado que:
Kilogramos totales de papa = 6500
Número de kilogramos por paquete = 25
Precio por paquete = $ 30
La mitad se vendió a $ 30
El resto se vende a ($ 30 - $ 2)
Número total de paquetes de 25 kg:
6500 kg / 25 kg = 260 paquetes
Por lo tanto, paquete total = 260 paquetes
La mitad se vende a $ 30:
(260/2) * 30
130 * $ 30 = $ 3900
Resto vendido a $ 28:
(260 - 130) * $ 28
130 * $ 28 = $ 3640
Cantidad total realizada:
$ (3640 + 3900) = $ 7540
Step 1: Create an equation with a slope of 6
y=6x+b
Step 2: Substitute x and y by with the point (1,2) and solve the equation for b
y=6x+b
2=6(1)
2=6
2=6+b
b=-4
Step 3: Substitute -4 for b in the equation
y=6x+b
y=6x+(-4)
y=6x-4
The equation that has a slope of 6 and passes through the point (1,2) in point-slope form:
y=6x-4
You're given two angles and the side not between them are congruent, so the AAS theorem applies. (2nd selection)