1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
4 years ago
14

Please someone help me to prove this!!​

Mathematics
2 answers:
shepuryov [24]4 years ago
5 0
The answer : 4 sin c sin b sin a


Step by step
Formula = A+b+c = 180

B+c = 180-A

C+A= 180-B

A+B= 180-c




2 sin c • 2 cos a-b+c/ 2 cos a-b-c / 2

4 sin c cos 180-2b/2 cos a-(180-a)/ 2

4 sin c cos (90-b ) cos ( A-90)

4 sin c sin b sin A


Y_Kistochka [10]4 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π     →     A + B = π - C

                                             A + C = π - B                                            

                                             B + C = π - A

Use the Cofunction Identity:  sin A = cos (π/2 - A)

Use the following Sum to Product Identity:

sin A + sin B = 2 sin [(A + B)/2] · cos [(A + B)/2]

Use the Double Angle Identity:  sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                   sin (B + C - A) + sin (C + A - B) + sin (A + B - C)

Given:                 sin[(π - A) - A) + sin [(π - B) - B] + sin [(π - C) - C]

                        = sin (π - 2A) + sin (π - 2B) + sin (π - 2C)

                        = sin 2A + sin 2B + sin 2C

                        = (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)+\sin 2C\\\\.\qquad \qquad \qquad \qquad =2\sin (A+B)\cdot \cos (A-B)+\sin 2C

\text{Double Angle:}\qquad 2\sin (A+B)\cdot \cos (A-B)+2\sin C \cdot \cos C

Given:                  2 sin C · cos (A - B) + 2 sin C · cos C

Factor:                 2 sin C [cos (A - B) + cos C]

\text{Sum Product:}\qquad 2\sin C\cdot 2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\\\\.\qquad \qquad \qquad =2\sin C\cdot 2\cos \bigg(\dfrac{(A+C)-B}{2}\bigg)\cdot \cos \bigg(\dfrac{A-(B+C)}{2}\bigg)

\text{Given:}\qquad \qquad 4\sin C\cdot \cos \bigg(\dfrac{(\pi -B)-B}{2}\bigg)\cdot \cos \bigg(\dfrac{A-(\pi -A)}{2}\bigg)\\\\.\qquad \qquad \qquad =4\sin C\cdot \cos \bigg(\dfrac{\pi -2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-\pi}{2}\bigg)\\\\.\qquad \qquad \qquad =4\sin C\cdot \cos \bigg(\dfrac{\pi}{2}-B\bigg)\cdot \cos \bigg(\dfrac{\pi}{2}-A\bigg)

Cofunction:        4 sin A · sin B · sin C

LHS = RHS: 4 sin A · sin B · sin C = 4 sin A · sin B · sin C  \checkmark

You might be interested in
Is y^2 +6y +36 a perfect trinomial
Elena-2011 [213]

Answer:

hi

Step-by-step explanation:

it is not a prfect trinomial also it is not perfect square it is just a trionimial

7 0
3 years ago
Read 2 more answers
How many 1/5s make 14/10?
nydimaria [60]
There are 1/5 goes into 14/10 seven times
8 0
4 years ago
Read 2 more answers
Expand each expression and collect like terms. a. -3(2p - 3q) <br>​
emmasim [6.3K]

Answer:

-6p+9q

Step-by-step explanation:

Multiply -3 with 2p and multiply -3 with 3q.

8 0
3 years ago
ES) 12. There are 2 companies that you can rent a bike from.
sukhopar [10]

Answer:

dghsjdxfkhc,gjmhnfgb

Step-by-step explanation:

7 0
3 years ago
Can someone solve for n please❤️
zvonat [6]

Answer:

um I did this in my head but -20/3

Step-by-step explanation:

-6/5N × -5/6= 8× -5/6

simplify

n= 4/1× -5/3

n= -20/3

?

8 0
3 years ago
Read 2 more answers
Other questions:
  • 2/5x+y=3<br> solve the equation for y.
    5·1 answer
  • What integer best represents a gain of 5 gain
    13·1 answer
  • Hailey paid $13 for 1 3/7 kg of sliced salami. What was the cost per kilogram of salami?
    11·2 answers
  • F(x) = −5x2 − x + 20, find f(3).
    14·1 answer
  • Five times<br>times q is subtracted from<br>twice<br>y.​
    5·1 answer
  • Solve -1/2 I6-3X l= -6
    9·1 answer
  • I NEED HELP ASAPPPPPPP
    15·1 answer
  • Loans can come with different repayment options. Which option will always be most logical?
    11·1 answer
  • Point B is the midpoint of AC. AB=3x and AC=5x+21 . What is the value of AB?
    12·1 answer
  • HELP PLEASE!)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!