1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
4 years ago
14

Please someone help me to prove this!!​

Mathematics
2 answers:
shepuryov [24]4 years ago
5 0
The answer : 4 sin c sin b sin a


Step by step
Formula = A+b+c = 180

B+c = 180-A

C+A= 180-B

A+B= 180-c




2 sin c • 2 cos a-b+c/ 2 cos a-b-c / 2

4 sin c cos 180-2b/2 cos a-(180-a)/ 2

4 sin c cos (90-b ) cos ( A-90)

4 sin c sin b sin A


Y_Kistochka [10]4 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π     →     A + B = π - C

                                             A + C = π - B                                            

                                             B + C = π - A

Use the Cofunction Identity:  sin A = cos (π/2 - A)

Use the following Sum to Product Identity:

sin A + sin B = 2 sin [(A + B)/2] · cos [(A + B)/2]

Use the Double Angle Identity:  sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                   sin (B + C - A) + sin (C + A - B) + sin (A + B - C)

Given:                 sin[(π - A) - A) + sin [(π - B) - B] + sin [(π - C) - C]

                        = sin (π - 2A) + sin (π - 2B) + sin (π - 2C)

                        = sin 2A + sin 2B + sin 2C

                        = (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)+\sin 2C\\\\.\qquad \qquad \qquad \qquad =2\sin (A+B)\cdot \cos (A-B)+\sin 2C

\text{Double Angle:}\qquad 2\sin (A+B)\cdot \cos (A-B)+2\sin C \cdot \cos C

Given:                  2 sin C · cos (A - B) + 2 sin C · cos C

Factor:                 2 sin C [cos (A - B) + cos C]

\text{Sum Product:}\qquad 2\sin C\cdot 2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\\\\.\qquad \qquad \qquad =2\sin C\cdot 2\cos \bigg(\dfrac{(A+C)-B}{2}\bigg)\cdot \cos \bigg(\dfrac{A-(B+C)}{2}\bigg)

\text{Given:}\qquad \qquad 4\sin C\cdot \cos \bigg(\dfrac{(\pi -B)-B}{2}\bigg)\cdot \cos \bigg(\dfrac{A-(\pi -A)}{2}\bigg)\\\\.\qquad \qquad \qquad =4\sin C\cdot \cos \bigg(\dfrac{\pi -2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-\pi}{2}\bigg)\\\\.\qquad \qquad \qquad =4\sin C\cdot \cos \bigg(\dfrac{\pi}{2}-B\bigg)\cdot \cos \bigg(\dfrac{\pi}{2}-A\bigg)

Cofunction:        4 sin A · sin B · sin C

LHS = RHS: 4 sin A · sin B · sin C = 4 sin A · sin B · sin C  \checkmark

You might be interested in
Can some one help with the following please…???
LenaWriter [7]

Answer:

5. 8

6. 18

Step-by-step explanation:

5.

a(a^2 + a - 1) + 7 =

= a^3 + a^2 - a + 7

For a = -1,

= (-1)^3 + (-1)^2 - (-1) + 7

= -1 + 1 + 1 + 7

= 8

6.

2ab(a + b) - 3ab(a - b) =

= 2a^2b + 2ab^2 - 3a^2b + 3ab^2

= -a^2b + 5ab^2

For a = 1 and b = 2,

= -(1)^2(2) + 5(1)(2)^2

= -1(2) + 5(4)

= - 2 + 20

= 18

5 0
3 years ago
Read 2 more answers
Help me just giving brainlist
elena-14-01-66 [18.8K]

Answer:

i think 2023 ...

3 0
3 years ago
A circle has a circumference of 513.86 what is the radius of the circle
fiasKO [112]
The radius of the circle is 81.78
4 0
3 years ago
Read 2 more answers
The length of the radius of a circle with an area of 100 yards is yards.
love history [14]

Answer:

r≈5.64

Step-by-step explanation:

5 0
3 years ago
For every 6 students who purchase a bag of M&amp;M’s, there are 5 students who purchase a pack of gum. Use M for the number of s
Assoli18 [71]

Answer:

  M/6 = G/5

Step-by-step explanation:

We are given a relation between the numbers of students in two different groups. That relation can be used to write an equation.

<h3>Groups who bought M&Ms</h3>

If we consider M&M buyers to be 6 in a group, then the number of those groups is ...

  M/6

<h3>Groups who bought gum</h3>

Similarly, the number of groups who bought gum will be ...

  G/5

where there are 5 gum-buyers in each group.

<h3>Equation</h3>

The problem statement tells us that for each group of one kind, there is a matching group of the other kind. That is, the numbers of groups are equal:

  M/6 = G/5

4 0
2 years ago
Other questions:
  • For how many games is the total cost of bowling equal for the two bowling establishments? Family bowling, game $4, shoes $1. Kni
    13·1 answer
  • Try this trick out on a friend. Tell your friend to place a dime in one hand and a penny in the other hand. Explain that you can
    5·1 answer
  • Who can help me ?<br> With this
    8·1 answer
  • F(x) = x2 + 3x + 2 is shifted 2 units left, the result is g(x). What is g(x)?
    7·1 answer
  • What is the area of a 4:3 aspect ratio 32 inch tv
    8·1 answer
  • )) Find the slope of the line that passes through (10, 1) and (1, 3).
    13·2 answers
  • roxy ran 7/8 of a mile in 10 minutes. Lou says he ran 5/5 of that distance in 10 minutes. which statement is true.
    8·2 answers
  • Travis, Jessica, and Robin are collecting donations for the school band. Travis wants to collect 20% more than Jessica and Robin
    14·2 answers
  • Factor out 2x squared minus 98 completely
    8·1 answer
  • Find the quotient.<br> h^6/h<br> h
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!