What must be true about the discriminant of this quadratic equation for the mentioned values of k? Assume p>0.
1 answer:
<span>1/(4p)(x-h)^2+k=0
</span><span>1/(4p)(x-h)^2 = -k
</span>
<span>k(4p)(x-h)^2+1=0
4kp (x^2 - 2xh + h^2) + 1 = 0
4kp x^2 - 8kph x + 4kph^2+1 = 0
D = (-8kph)^2 - 4(4kp)(4kph^2+1) = 64(kph)^2 - 64(kph)^2 - 16kp
D = -16kp < 0
SO discriminant is always less than 0
</span>
You might be interested in
Answer: 3
<u>Step-by-step explanation:</u>
![x^3-27=0\\\\x^3=27\\\\\sqrt[3]{x^3}=\sqrt[3]{27}\\\\x=\sqrt[3]{3\cdot 3\cdot 3} \\\\x=3](https://tex.z-dn.net/?f=x%5E3-27%3D0%5C%5C%5C%5Cx%5E3%3D27%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bx%5E3%7D%3D%5Csqrt%5B3%5D%7B27%7D%5C%5C%5C%5Cx%3D%5Csqrt%5B3%5D%7B3%5Ccdot%203%5Ccdot%203%7D%20%5C%5C%5C%5Cx%3D3)
F(0)=1
f(1)=2
f(n)=f(n-2)+10
Answer:
the bigger number is 38
the smaller number is 22
The answer is 21.47091055