Let's handle this case by case.
Clearly, there's no way both children can be girls. There are then two cases:
Case 1: Two boys. In this case, we have 13 possibilities: the first is born on a Tuesday and the second is not (that's 6 possibilities, six ways to choose the day for the second boy), the first is not born on a Tuesday and the second is (6 more possibilities, same logic), and both are born on a Tuesday (1 final possibility), for a total of 13 possibilities with this case.
Case 2: A boy and a girl. In this case, there are 14 possibilities: The first is a boy born on a Tuesday and the second is a girl born on any day (7 possibilities, again choosing the day of the week. We are counting possibilities by days of the week, so we must be consistent here.), or the first is a girl born any day and the second is a boy born on a Tuesday (7 possibilities).
We're trying to find the probability of case 1 occurring given that case 1 or case 2 occurs. As there's 13+14=27 ways for either case to occur, we have a 13/27 probability that case 1 is the one that occurred.
Answer:
Answer is 3x
Step-by-step explanation:
96=(x+8)*x*(x-2)=x^3 +6x^2 -16x. Solve to get x= -6,-4,4. Negative distance doesn't make sense, so x=+4. Therefore, length is (x+8)=(4+8)= 12, width=x=4, and height=(x-2)=(4-2)=2.
Answer:
$875.39
Step-by-step explanation:
1) Divide the tax rate (6.500%) by 100 to get a decimal rate of 0.06500.
2) Multiply the purchase price ($821.95) by the 0.06500 to get a sales tax amount of $53.43.
3) Add the $53.43 sales tax to the $821.95 price to get a total of $875.38.
4) Round $875.38
$$ −\frac{7}{10} \div\frac{2}{5}= \frac{-7}{4} $$ . totally answer. I hope helping with this answer