I think its 11 for its absolute value
A linear approximation to the error in volume can be written as
... ∆V = (∂V/∂d)·∆d + (∂V/∂h)·∆h
For V=(π/4)·d²·h, this is
... ∆V = 2·(π/4)·d·h·∆d + (π/4)·d²·∆h
Using ∆d = 0.05d and ∆h = 0.05h, this becomes
... ∆V = (π/4)·d²·h·(2·0.05 + 0.05) = 0.15·V
The nominal volume is
... V = (π/4)·d²·h = (π/4)·(2.2 m)²·(6.8 m) = 25.849 m³
Then the maximum error in volume is
... 0.15V = 0.15·25.849 m³ ≈ 3.877 m³
_____
Essentially, the error percentage is multiplied by the exponent of the associated variable. Then these products are added to get the maximum error percentage.
Answer:7
Step-by-step explanation:
6p-4+7p+3=90
13p-1=90
13p=91
p=7
Answer:
151434/358 = 423
Step-by-step explanation:
Every product with non-zero factors can be written as an equivalent division relation.
a·b = c ⇒ a = c/b
Here, we have 35.8 × 4.23 = 151.434. This can be written as the equivalent ...
4.23 = 151.434/35.8
We can multiply this by 100 to get a division relation with a quotient of 423:
423 = 15143.4/35.8
If we want, we can move the decimal points another place to the right to get ...
151434/358 = 423