Answer: My internet connection is not good enough.
Step-by-step explanation: This one may be pretty commonly used but also a common problem people always have and it's pretty unavoidable. Tell her that the call\meeting gets super laggy and then ends up freezing and that doing it over voice is a better option for you so you can get the best learning experience or something like that. Basically pretend you care until he\she believes it.
Good luck <3 Let me know if you need another!
Answer:
The answer is 364. There are 364 ways of choosing a recorder, a facilitator and a questioner froma club containing 14 members.
This is a Combination problem.
Combination is a branch of mathematics that deals with the problem relating to the number of iterations which allows one to select a sample of elements which we can term "<em>r</em>" from a collection or a group of distinct objects which we can name "<em>n</em>". The rules here are that replacements are not allowed and sample elements may be chosen in any order.
Step-by-step explanation:
Step I
The formula is given as

n (objects) = 14
r (sample) = 3
Step 2 - Insert Figures
C (14, 3) =
= 
= 
= 
= 364
Step 3
The total number of ways a recorder, a facilitator and a questioner can be chosen in a club containing 14 members therefore is 364.
Cheers!
Answer:
7 digits can be used for each position
There are a total of 5 positions
N = 7^5 = 16,807 numbers
You have 7 choices for the first position, second position, etc.
Answer:
121.7
Step-by-step explanation:
73
+48.7
=121.7
121.7
-73
=48.7
Step-by-step explanation:
Since it remains only 1 sweet, we can subtract it from the total and get the amount of sweets distributed (=1024).
As all the sweets are distributed equally, we must divide the number of distributed sweets by all its dividers (excluding 1024 and 1, we'll see later why):
1) 512 => 2 partecipants
2) 256 => 4 partecipants
3) 128 => 8 partecipants
4) 64 => 16 partecipants
5) 32 => 32 partecipants
6) 16 => 64 partecipants
7) 8 => 128 partecipants
9) 4 => 256 partecipants
10) 2 => 512 partecipants
The number on the left represents the number of sweets given to the partecipants, and on the right we have the number of the partecipants. Note that all the numbers on the left are dividers of 1024.
Why excluding 1 and 1024? Because the problem tells us that there remains 1 sweet. If there was 1 sweet for every partecipant, the number of partecipants would be 1025, but that's not possible as there remains 1 sweet. If it was 1024, it wouldn't work as well because the sweets are 1025 and if 1 is not distributed it goes again against the problem that says all sweets are equally distributed.