Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.
Answer:
B) 11.8
Step-by-step explanation:
First write in 4 for x and 2 for y
Then multiply 1.3 times 6 (4+2) and subtract 2-6
Your expression should now be 7.8 +4
After adding these, it should be 11.8
Answer:
The answer is 6.
Step-by-step explanation:
If there are 270 students going on the trip and there would be a teacher for every 45 students you would have to divide.
You would divide 270 ÷ 45 = 6.
Answer:
let cow=x and chickens =y
cows have 4 legs, 4x. chickens have 2 legs, 2y
Answer:
a) 0.54 = 54% probability that a randomly selected person will feel guilty for either wasting food or leaving lights on when not in a room or both.
b) 0.46 = 46% probability that a randomly selected person will not feel guilty for either of these reasons
Step-by-step explanation:
We use Venn's Equations for probabilities.
I am going to say that:
P(A) is the probability that a randomly selected person will feel guilty about wasting food.
P(B) is the probability that a randomly selected person will feel guilty about leaving lights on when not in a room.
0.12 probability that a randomly selected person will feel guilty for both of these reasons.
This means that 
0.27 probability that a randomly selected person will feel guilty about leaving lights on when not in a room.
This means that 
0.39 probability that a randomly selected person will feel guilty about wasting food
This means that 
a. What is the probability that a randomly selected person will feel guilty for either wasting food or leaving lights on when not in a room or both (to 2 decimals)?

0.54 = 54% probability that a randomly selected person will feel guilty for either wasting food or leaving lights on when not in a room or both.
b. What is the probability that a randomly selected person will not feel guilty for either of these reasons (to 2 decimals)?

0.46 = 46% probability that a randomly selected person will not feel guilty for either of these reasons