Answer: The explicit rule for the geometric sequence is:
an=(2/5) (5)^(n-1), for n=1, 2, 3, 4, ...
Solution:
a1=2/5
an=5 (an-1)
n=2→a2=5 (a2-1)= 5 (a1)= 5 (2/5)→a2= (2/5) (5)
n=3→a3= 5 (a3-1)= 5 (a2)= 5 [(2/5) (5)]=(2/5) (5)^(1+1)→ a3=(2/5) (5)^2
n=4→a4= 5 (a4-1)= 5 (a3)= 5 [(2/5) (5)^2]= (2/5) (5)^(2+1)→ a4=(2/5) (5)^3
a1=2/5=(2/5) (1)=(2/5) (5)^0→a1=(2/5) (5)^(1-1)
a2=(2/5) (5)=(2/5) (5)^1→a2=(2/5) (5)^(2-1)
a3=(2/5) (5)^2→a3=(2/5) (5)^(3-1)
a4=(2/5) (5)^3→a4=(2/5) (5)^(4-1)
Then:
an=(2/5) (5)^(n-1), for n=1, 2, 3, 4, ...
No, because all sides are not congruent. The answer is B.
Answer:
The correct option is B.
Step-by-step explanation:
The hypothesis to determine whether the vending machines are properly dispensing 12 ounces of coffee is:
<em>H</em>₀: 
<em>Hₐ</em>: Not all means are equal.
The ANOVA output is as follows:
One-way ANOVA: Machine A, Machine B, Machine C
Source DF SS MS F P
Factor 2 8.363 4.182 31.73 0.000
Error 15 1.977 0.132
Total 17 10.340
The significance level is <em>α </em>= 0.05.
The <em>p</em>-value of the model is:
<em>p</em>-value = 0.000
Decision rule:
If the p-value of the test is less than the significance level then the null hypothesis will be rejected.
<em>p</em>-value = 0.000 < <em>α </em>= 0.05
The null hypothesis will be rejected.
Conclusion:
There is a significant difference between the means.
Thus, the correct option is B.