7/8 can be converted to .875 because 1/8 is .125 and .125*7=.875. Add -12 to it so the answer is -12.875
Given:
The system of equations:


To find:
The number that can be multiplied by the second equation to eliminate the x-variable when the equations are added together.
Solution:
We have,
...(i)
...(ii)
The coefficient of x in (i) and (ii) are 1 and
respectively.
To eliminate the variable x by adding the equations, we need the coefficients of x as the additive inverse of each other, i.e, a and -a So, a+(-a)=0.
It means, we have to convert
into -1. It is possible if we multiply the equation (ii) by -5.
On multiplying equation (ii) by -5, we get
...(iii)
On adding (i) and (iii), we get

Here, x is eliminated.
Therefore, the number -5 can be multiplied by the second equation to eliminate the x-variable.
1 mile is equal to 0.868976 nautical miles
Therefore 12 miles is equal to 10.427, rounded the answer is B.
Hope that was helpful.
Answer:
The probability is
≅ 
Step-by-step explanation:
Let's analyze the question.
There are 15 students in the 8th grade.
The students are randomly placed into three different algebra classes of 5 students each.
We are looking for the probability that Trevor, Terry and Evan will be in the same algebra class.
One possible way to solve this question is to think about the product probability rule.
We can use it because we are in an equiprobable space. (And also the events are independent).
Let's set for example a class for Evan.
The probability that Evan will be in a class is 
Then for Terry there are
places out of
that puts Terry in the Evan's class.
We write 
Finally for Trevor there are
places out of the remaining
that puts Trevor in the same class with Evan and Terry.
Using the product rule we write :

The probability of the event is
≅ 
Answer:
the answer is a
Step-by-step explanation: