The answer is 12. Thanks (;
Answer:
2. x = 135
Step-by-step explanation:
im not sure about question 1
Answer:
The probability is 0.3576
Step-by-step explanation:
The probability for the ball to fall into the green ball in one roll is 2/1919+2 = 2/40 = 1/20. The probability for the ball to roll into other color is, therefore, 19/20.
For 25 rolls, the probability for the ball to never fall into the green color is obteined by powering 19/20 25 times, hence it is 19/20^25 = 0.2773
To obtain the probability of the ball to fall once into the green color, we need to multiply 1/20 by 19/20 powered 24 times, and then multiply by 25 (this corresponds on the total possible positions for the green roll). The result is 1/20* (19/20)^24 *25 = 0.3649
The exercise is asking us the probability for the ball to fall into the green color at least twice. We can calculate it by substracting from 1 the probability of the complementary event: the event in which the ball falls only once or 0 times. That probability is obtained from summing the disjoint events: the probability for the ball falling once and the probability of the ball never falling. We alredy computed those probabilities.
As a result. The probability that the ball falls into the green slot at least twice is 1- 0.2773-0.3629 = 0.3576
Answer:
one side = 
Step-by-step explanation:
if you draw an octagon on a piece of paper, you can draw a square around it, you should be able to see a diagram of this attached, ignore the 6.
Let's say TP = a
since it's a regular octagon, TP = HT
and using the Pythagoras Theorem, we know a² + b² = c² and thus:
√(AT² + HA²) = HT
and since AT = HA which we will call x, the equation becomes:
√(2x²) = HT = a
rearrange the equation to solve for x and you get:
2x² = a²
x² = 
x =
which, if you rationalise the denominator, you get:
x = 