1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
4 years ago
7

Let f(x) = 27x5 – 33x4 – 21x3 and g(x) = 3x2. Find f(x)/g(x)

Mathematics
1 answer:
marissa [1.9K]4 years ago
8 0
(27x^5 - 33x^4 - 21x^3)/3x^2 = (27/3)x^(5 - 2) - (33/3)x^(4 - 2) - (21/3)x^(3 - 2) = 9x^3 - 11x^2 - 7x
You might be interested in
In 1 hour the employee dropped 635 chocolates. If this represents 25% of the days chocolate molds, how many chocolates were plan
Zinaida [17]

Answer:

2540

Step-by-step explanation:

25% is a quarter of 100% so if 635 is 25% you multiple 635 x 4 to get your final answer concluding in 2540. if i'm wrong let someone else correct me :b

4 0
3 years ago
Write log7(2 ⋅ 6) + log73 as a single log. Log Subscript 7 Baseline 11 Log Subscript 7 Baseline 15 Log Subscript 7 Baseline 36
zhannawk [14.2K]

Answer:

C. log7 36....................................

8 0
3 years ago
Read 2 more answers
Given a * b=ba−ba+ab, find (2*3)×(3*2).
Vladimir79 [104]

Answer:

36

Step-by-step explanation:

a = (2×3) = 6

b = (3×2) = 6

Substitue into the equation:

                          a×b=ba−ba+ab

                                = 6×6 - 6×6 + 6×6

                                = 36 - 36 + 36

                                = 36

Therefore, (2*3)×(3*2) = 36

Hope this helps.☺

4 0
3 years ago
In a rectangle, the sides have measurements of 2x + 1 and 3x - 5 units Find an expression for the area of the rectangle, in squa
SashulF [63]

Answer:

(6 {x}^{2}   - 7x - 5) \:  {units}^{2}

Step-by-step explanation:

Area of rectangle = Product of sides

= (2x + 1) \times (3x - 5) \\  = 2x(3x - 5) + 1(3x - 5) \\  = 6 {x}^{2} - 10x + 3x - 5 \\ area \: of \: rectangle \:  \\  = (6 {x}^{2}   - 7x - 5) \:  {units}^{2}

4 0
4 years ago
How can I evaluate this question?
ohaa [14]
\bf \left(x^2-\cfrac{2}{\sqrt{x}}+1  \right)(\sqrt[3]{x}+3x-4)\quad 
\begin{cases}
\frac{2}{\sqrt{x}}\implies \frac{2}{x^{\frac{1}{2}}}\implies 2x^{-\frac{1}{2}}\\\\
\sqrt[3]{x}\implies x^{\frac{1}{3}}
\end{cases}
\\\\\\
(x^2-2x^{-\frac{1}{2}}+1)(x^{\frac{1}{3}}+3x-4)

\bf \\\\\\
\begin{cases}
x^2\cdot x^{\frac{1}{3}}+3x^3-4x^2\\\\
-2x^{-\frac{1}{2}}\cdot x^{\frac{1}{3}}-2x^{-\frac{1}{2}}\cdot 3x+2x^{-\frac{1}{2}}\cdot 4\\\\
+x^{\frac{1}{3}}+3x-4
\end{cases}
\\\\\\ 
\begin{cases}
x^{2+\frac{1}{3}}+3x^3-4x^2\\\\
-2x^{-\frac{1}{2}+\frac{1}{3}}-6x^{-\frac{1}{2}+1}+8x^{-\frac{1}{2}}\\\\
+x^{\frac{1}{3}}+3x-4
\end{cases}

\bf x^{\frac{7}{3}}+3x^3-4x^2-2x^{-\frac{1}{6}}-6x^{\frac{1}{2}}+8x^{-\frac{1}{2}}+x^{\frac{1}{3}}+3x-4
\\\\\\
\sqrt[3]{x^7}+3x^3-4x^2-\cfrac{2}{x^{\frac{1}{6}}}-6\sqrt{x}+\cfrac{8}{x^{\frac{1}{2}}}+\sqrt[3]{x}+3x-4
\\\\\\
x^2\sqrt[3]{x}+3x^3-4x^2-\cfrac{2}{\sqrt[6]{x}}-6\sqrt{x}+\cfrac{8}{\sqrt{x}}+\sqrt[3]{x}+3x-4
8 0
3 years ago
Other questions:
  • Help!
    11·2 answers
  • Solve for x.<br> 5x - 3 = 12<br> x = 9/5<br> X=-9/5<br> x=3<br> O<br> x=-3
    9·1 answer
  • Type the equation that shows the pattern among this set of ordered pairs.
    11·1 answer
  • I'm helping a friend w his hw. Please help us.
    5·2 answers
  • Please help me ASAP.
    12·2 answers
  • Find the quotient:<br> 7/8
    14·1 answer
  • Soccer
    7·1 answer
  • Jaiver bought a new TV for 479.76. He will make equal payments each month for 2 years . Estimate each payment.
    10·1 answer
  • Pllzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
    9·2 answers
  • Help pls i dont get this and it needs to be done before we leave
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!