Let width = w
Let length = l
Let area = A
3w+2l=1200
2l=1200-3w
l=1200-3/2
A=w*l
A=w*(1200-3w)/2
A=600w-(3/2)*w^2
If I set A=0 to find the roots, the maximum will be at wmax=-b/2a which is exactly 1/2 way between the roots-(3/2)*w^2+600w=0
-b=-600
2a=-3
-b/2a=-600/-3
-600/-3=200
w=200
And, since 3w+2l=1200
3*200+2l=1200
2l = 600
l = 300
The dimensions of the largest enclosure willbe when width = 200 ft and length = 300 ft
check answer:
3w+2l=1200
3*200+2*300=1200
600+600=1200
1200=1200
and A=w*l
A=200*300
A=60000 ft2
To see if this is max area change w and l slightly but still make 3w+2l=1200 true, like
w=200.1
l=299.85
A=299.85*200.1
A=59999.985
Answer:
4(k - 3)(3k + 5)
Step-by-step explanation:
Given
12k² - 16k - 60 ← factor out 4 from each term
= 4(3k² - 4k - 15) ← factor the quadratic
Consider the factors of the product of the coefficient of the k² term and the constant term which sum to give the coefficient of the k term
product = 3 × - 15 = - 45 , sum = - 4
Factors are - 9 and + 5
Use these factors to split the middle term
3k² - 9k + 5k - 15 → ( factor the first/second and third/fourth terms
= 3k(k - 3) + 5(k - 3) ← factor out (k - 3)
= (k - 3)(3k + 5)
Hence
12k² - 16k - 60 = 4(k - 3)(3k + 5) ← in factored form
The equation that represents the array (rectangles and area) multiplication model that sows two grey shaded columns of length one ninth each and three rows with dots of width one fourth each is option <em>a</em>
a) The equation with fractions two ninths times three fourths is equal to six thirty sixths

<h3>What is an array (area) multiplication model?</h3>
An array representation of a multiplication is a rectangular visual order of positioning of rows and columns that indicates the terms of a multiplication equation.
Please find attached the area model to multiply the fractions
The terms of the equation represented by the model are indicated by the two columns of length one ninth each shaded grey and the three rows of width one fourth each covered with dots, such that the equation can be presented as follows;

The equation that the model represents is therefore;
- The equation with fractions two ninths times three fourths is equal to six thirty sixths
Learn more about multiplication models here:
brainly.com/question/24586779
#SPJ1