1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horsena [70]
3 years ago
8

What is a algebraic expression

Mathematics
2 answers:
alexgriva [62]3 years ago
8 0

Answer: An algebraic expression is a mathematical phrase that can contain numbers and/or variables.

Step-by-step explanation:

Zarrin [17]3 years ago
4 0

Answer:

Algebraic expression is an expression built up from integer constants, variables, and the algebraic operations

Step-by-step explanation:

You might be interested in
what is the slope and equation of a line that is perpendicular to the y-axis passing through (-5,-3)?​
Illusion [34]

Answer:

Slope is m=0

y=-3

Step-by-step explanation:

The slope of any line that is perpendicular to the y-axis is zero.

The reason is that any line that is perpendicular to the y-axis is also parallel to the x-axis and the slope of the x-axis is zero.

The equation of any line perpendicular to the y-axis is and passes through (a,b) is y=b.

The given point is (-5,-3) hence the required equation is

y=-3

3 0
2 years ago
Without finding the inverse of the function determine the range of the inverse of F(x) = the square root of x-4
Nastasia [14]
The rang of an inverse function is the domain of the normal function
So you just gotta find the domain of that which is x is greater than or equal to 0
3 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Please answer my question .q bo 4 d and e
sdas [7]
4 (e) 
sin^8 x - cos^8 x
= (sin^4 x + cos^4 x)(sin^4 x - cos^4 x)
= (sin^4 x + cos^4 x)(sin^2 x - cos^2x)(sin^2 x +cos^2 x)
=  (sin^4x + cos^4 x)( sin^2 x- cos^2 x)

Sorry I cant do 4 (d).
5 0
3 years ago
Write the following fractions in word. 3/4, 1/5, 3/4, 1 3/5.. please help me​
Alik [6]

Answer:

"In word" as in word form?

3/4 = three fourths

1/5 = one fifth

3/4 = three fourths (again?)

1 3/5 = one and three fifths

4 0
2 years ago
Other questions:
  • For questions 3-4 which kind of function best models the data in the table? use differences or ratios.
    9·1 answer
  • What is the answer to 14x - 3= 10x + 1
    8·1 answer
  • Radical2-8-(rad3+rad2)+(rad3-rad5)+rad5
    7·1 answer
  • Calculate the circumference of the inscribed circle. [Use π = 3.14]
    14·2 answers
  • PLEAS EHELP ILL GIVE BRAINLIEST<br> PLEASE SHOW WORK SO I CAN UNDERSTAND
    15·2 answers
  • Which expression equivalent to -49(4)+2/3?
    11·1 answer
  • Which of the following expressions is a polynomial?
    10·1 answer
  • How do you think transformations and math are related
    14·1 answer
  • HELP FASTTT 50 POINTS.... NO FOOLING
    8·2 answers
  • collin is building vegetable gardens. the first garden will be 3 feet long and 2/3 wide. the second garden will be 3 feet long a
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!