<span>a. They have homologous structures because they have a common ancestor.
</span>
Answer:
Closely related species occupying the same niche.
Explanation:
Competitive exclusion principle states that the two species cannot exist together if they share the same resources. The one species completely exclude the other species from their niche.
Competitive exclusion principle generally occurs between the species that occupy the same niche and are closely related with each other. The competitive exclusion principle first explained between the species <em>P. aurelia </em>and <em>P. caudatum.</em>
Thus, the correct answer is option (B).
The mammalian tail and the human coccyx, the leaves of pitcher plants and cacti, are homologous organs while, the flippers of penguins and dolphins, as well as the shells of turtles and crabs are analogous structures.
<h3>What are homologous organs?</h3>
Homologous organs are those that are similar in structure but operate differently. They resulted from divergent evolution.
Divergent evolution occurs when species are closely connected to the same ancestors but develop similar structures that perform different tasks in different environments.
Analogous Organs are organs from various creatures that, despite their appearance, perform the same function.
In the given case, the mammalian tail and coccyx, as well as the leaves of pitcher plants and cacti, are homologous organs, whereas penguin and dolphin flippers, as well as turtle and crab shells, are analogous structures.
Thus, these are the different instances of homologous and analogous organs.
For more details regarding homologous structures, visit:
brainly.com/question/1274613
#SPJ1
The four levels of protein structure are distinguished from one another by the degree of complexity in the polypeptide chain. A single protein molecule may contain one or more of the protein structure types: primary, secondary, tertiary, and quaternary structure. 1. Primary Structure: describes the unique order in which amino acids are linked together to form a protein.
2. Secondary Structure: refers to the coiling or folding of a polypeptide chain that gives the protein its 3-D shape. There are two types of secondary structures observed in proteins. One type is the alpha (α) helix structure. This structure resembles a coiled spring and is secured by hydrogen bonding in the polypeptide chain. The second type of secondary structure in proteins is the beta (β) pleated sheet. This structure appears to be folded or pleated and is held together by hydrogen bonding between polypeptide units of the folded chain that lie adjacent to one another
3. Tertiary Structure: refers to the comprehensive 3-D structure of the polypeptide chain of a protein.
4. Quaternary Structure: is the structure of a protein macromolecule formed by interactions between multiple polypeptide chains. Each polypeptide chain is referred to as a subunit. Proteins with quaternary structure may consist of more than one of the same type of protein subunit.
Compound microscope im pretty sure is the answer!