{\text{Direction of parabola depends on the sign of quadratic coefficient of a }} \hfill \\
{\text{quadratic equation}}. \hfill \\
{\text{For given quadratic equation}}. \hfill \\
a{x^2} + bx + c = 0 \hfill \\
{\text{The parabola is in the upward direction if }}a{\text{ }} > {\text{ }}0{\text{ and in downward direction if }}a < 0 \hfill \\
{\text{Here, the equation of given parabola is }} \hfill \\
{x^2} - 6x + 8 = y \hfill \\
\Rightarrow y = \left( {{x^2} - 6x + 9} \right) - 9 + 8 \hfill \\
\Rightarrow y = {\left( {x - 3} \right)^2} - 1. \hfill \\
{\text{Thus, the parabola is in the upward direction}} \hfill \\
Answer:
FIRST PROBLEM:
Exact Form:
x = 25 /19
Decimal Form:
x = 1.31578947
Mixed Number Form:
x = 1 6 /19
SECOND PROBLEM
x = − 9 + √ 106 , − 9 − √ 106
Decimal Form: x = 1.29563014 , − 19.29563014
Step-by-step explanation: