Answer:



Step-by-step explanation:
The given probabilities are; P(Orange) = 1/3, P(Blue) = 1/6, P(Purple) = 1/2
The probability of rolling any of the six numbers of the six-sided die = 1/6
a. The probability of simultaneously 'rolling a 3' and 'spinning blue', P(3 and Blue) is given as follows;
P(rolling a 3) = 1/6, P(Blue) = 1/6
∴ P(3 and Blue) = (1/6) × (1/6) = 1/36
P(3 and Blue) = 1/36

b. The probability of either 'rolling a 1' or 'spinning Orange', P(1 or Orange), is given as follows;
P(rolling a 1) = 1/6, P(Orange) = 1/3
P(1 or Orange) = P(rolling a 1) + P(Orange) - P(1 and Orange)
Where;
P(1 and Orange) = (1/6) × (1/3) = 1/18
∴ P(1 or Orange) = 1/6 + 1/3 - 1/18 = 4/9
P(1 or Orange) = 4/9

c. The probability of not spinning a blue, P(not Blue) is given as follows;
P(not Blue) = P(rolling all outcomes of the die) and (The sum of the spin probabilities - P(Blue)
∴ P(not Blue) = 1 × ((1/3 + 1/6 + 1/2) - 1/6) = 1 × (1 - 1/6) = 5/6
P(not Blue) = 5/6
