Like 6 minutes or somthin
Answer:
(1/2)z
Step-by-step explanation:
Answer:
I don't use Geogebra, but the following procedure should work.
Step-by-step explanation:
Construct a circle A with point B on the circumference.
- Use the POINT and SEGMENT TOOLS to create a circle with centre B and radius BA.
- Use the POINT tool to mark points D and E where the circles intersect.
- Use the SEGMENT tool to draw segments from C to D, C to E, and D to E.
You have just created equilateral ∆CDE inscribed in circle A.
Answer:
D
Step-by-step explanation:
You are always able to do better, and Fiona needs to reflect
If in the triangle ABC , BF is an angle bisector and ∠ABF=41° then angle m∠BCE=8°.
Given that m∠ABF=41° and BF is an angle bisector.
We are required to find the angle m∠BCE if BF is an angle bisector.
Angle bisector basically divides an angle into two parts.
If BF is an angle bisector then ∠ABF=∠FBC by assuming that the angle is divided into two parts.
In this way ∠ABC=2*∠ABF
∠ABC=2*41
=82°
In ΔECB we got that ∠CEB=90° and ∠ABC=82° and we have to find ∠BCE.
∠BCE+∠CEB+EBC=180 (Sum of all the angles in a triangle is 180°)
∠BCE+90+82=180
∠BCE=180-172
∠BCE=8°
Hence if BF is an angle bisector then angle m∠BCE=8°.
Learn more about angles at brainly.com/question/25716982
#SPJ1