1. 8c^2-26c+15= (4c-3) (2c-5). Break the expression into groups: =(8c^2-6c)+(-20c+15). Factor out 8c^2-6c: 2c(4c-3). Factor out -5 from -20c+ 15: -5(4c-3). Lastly factor out common term (4c-3) and thats how you'll get your answer (4c-3) (2c-5).
2. common factors for 270 and 360 is 90.To find this write the factors of each and find the largest one.270: 1, 270, 2, 135, 3, 90, 5, 54, 6, 45, 9, 30, 10, 27, 15, 18360: 1, 360, 2, 180, 3, 120, 4, 90, 5, 72, 6, 60, 8, 45, 9, 40, 10, 36, 12, 30, 15, 24, 18, 20 3. The factors for 8 a3b2 and 12 ab4 is 4. because 8: 1, 2, 4, 812: 1, 2, 3, 4, 6, 12.
4. 81a^2+36a+4= (9a+2)^2. Break down the expression into groups: (81a^2+18a)+(18a+4). Factor out 9a from 81a^2 +18a: 9a(9a+2). Factor out 2 from 18a+4: 2(9a+2). so the groups you got are now 9a(9a+2)+2(9a+2). Lastley factor out common term (9a+2) to get (9a+2) (9a+2). Finally you get the answer (9a+2)^2.
5. mn-15+3m-5n= (n+3)(m-5). factor out m from nm+3m: m(n+3). Factor out -5 from -5n-15: -5(n+3). And thats how you get the number (n+3)(m-5)
A lattice point may be defined as the point of intersection of two grid lines or more than two grid lines that is placed in a regularly spaced points arrays. This is called a lattice point.
In the context, Chris tries to label every lattice point in a coordinate plane with its square of distance from the point to its origin. The lattice points means that the numbers are both the integers. So for number 25, Chris has to label 4 times