Nearly 81 moons will be required to equate the mass of moon to the mass of earth.
Step-by-step explanation:
Mass of earth is 5.972*10^24 kg.
Mass of the moon is 7.36*10^25 g = 7.36*10^22 kg
As mass of the Earth is given as 5.972 * 10^24 kg and mass of the moon is given as 7.36 * 10^22 kg, then the number of moons required to make it equal to the mass of earth can be calculated by taking the ratio of mass of earth to moon.
Mass of Earth = Number of moons * Mass of Moon
Number of Moons = Mass of Earth/Mass of moon
Number of moons = 5.972 * 10^24/7.36*10^22= 81 moons.
So nearly 81 moons will be required to equate the mass of moon to the mass of earth.
B and C are both correct
t(s) is equivalent to the temperature of the tea after s amount of seconds
Answer: A
Step-by-step explanation:
First, the problem is g(f(x)). You would plug in f(x) wherever you see an x in g(x). To find the domain, you take the bottom function, and set it equal to 0.
When you solve that, you get x=2. You know your domain is x≥2, but there is as asymptote at x=11. That means the graph never reaches x=11, but gets very close. You find that by setting the entire equation equal to 0 and solve from there.
Hhhhhhhhhhhhjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Answer:
D)
Step-by-step explanation: