Answer: 1.
x |0|0.5|2
dy/dx |2|5 |undefined
2.
x |0 |0.5| 2
dy/dx |undefined|5 | 2
3.
x | 0 |0.5|2
dy/dx|undefined |4 |2
Step-by-step explanation:
The 1,000s place because she was in the 100s and you moved 6 to the left which makes the number higher.
Answer:
the issue will be for 4/5
Answer:
The second table of values.
Step-by-step explanation:
Let's put the x-values in the second table of values in correct number order:
x: -3, -2, -1, 0, 1
Now, let's write out the y-values in correct number order:
y: 1/4, 1, 4, 16, 64
Finally, let's rewrite the second table of values with the x-values in order and the corresponding y-values underneathe:
x: -3, -2, -1 0 1
y: 64, 16, 4, 1, 1/4
As it can be seen, as the x-values get bigger in value, the y-values get smaller exponentially, which is the definition of exponential decay.
The angles are the only constraint here that counts. If one of the three interior angles of a supposed triangle is 50 degrees and another is 80 degrees, then the third angle must be 50 degrees. Thus, we have a 50-50-80 triangle, which is isosceles though not a right triangle. If 4 feet is a measure of one of the equal sides of a supposed triangle, then obviously the adjacent side also has measure 4 ft.
The set of angles remains the same (50-50-80), but subject to the constraint mentioned above, the measure of any one of the sides has infinitely many possible values, so long as those values are positive.