Given the function f(x)=-3x^3+9x^2-2x+3 what part of the function indicates that the left end starts at the top of the graph
The negative sign in the cubed term.
Answer:
Option 1
Step-by-step explanation:
![\sqrt[4]{ {a}^{6} {b}^{4} {c}^{8} } \\ = {a}^{6 \div 4} {b}^{4 \div 4} {c}^{8 \div 4} \\ which \: gives \: option \: 1](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%20%7Ba%7D%5E%7B6%7D%20%20%7Bb%7D%5E%7B4%7D%20%20%7Bc%7D%5E%7B8%7D%20%20%7D%20%5C%5C%20%20%20%3D%20%7Ba%7D%5E%7B6%20%20%5Cdiv%204%7D%20%20%7Bb%7D%5E%7B4%20%5Cdiv%204%7D%20%20%7Bc%7D%5E%7B8%20%5Cdiv%204%7D%20%5C%5C%20which%20%5C%3A%20gives%20%5C%3A%20option%20%5C%3A%201)
Answer:
A) 7x^2-7x+15
Step-by-step explanation:
f(x) = 4x2 - 5x + 7,
g(x) = 3x2 - 2x + 8
f(x) +g(x) =
4x^2 - 5x + 7 + 3x^2 - 2x + 8=
7x^2-7x+15
Answer:
a = l²
v = s³
Step-by-step explanation:
The area of a rectangle is the product of its length and width. When that rectangle is a square, the length and width are the same. Here, they are given as "l". Then the area of the square is ...
a = l·l = l²
__
The volume of a cuboid is the product of its height and the area of its base. A cube of edge length s has a square base of side length s and a height of s. Then its volume will be ...
v = s·(s²) = s³
The two equations you want are ...
• a = l²
• v = s³
3/5 x 4 = 12/20
H = 12
Sorry if wrong