Answer:
Two slender woolen sweaters are hotter than a thick woolen sweater in light of the fact that there is a layer of air between them that doesn't permit our body warmth to get away yet it likewise it doesn't retains heat from the climate and fleece is additionally a protector that itself doesn't permit our body warmth to get away
True i really don’t feel like giving an explanation but trust me it’s trye
Answer:
D
Explanation:
water freezes in cracks in rock
Answer:
36.55 J
Explanation:
PE = Potential energy
KE = Kinetic energy
TE = Total energy
The following data were obtained from the question:
Position >> PE >>>>> KE >>>>>> TE
1 >>>>>>>> 72.26 >> 27.74 >>>> 100
2 >>>>>>>> 63.45 >> x >>>>>>>> 100
3 >>>>>>>> 58.09 >> 41.91 >>>>> 100
The kinetic energy of the pendulum at position 2 can be obtained as follow:
From the table above, at position 2,
Potential energy (PE) = 63.45 J
Kinetic energy (KE) = unknown = x
Total energy (TE) = 100 J
TE = PE + KE
100 = 63.45 + x
Collect like terms
100 – 63.45 = x
x = 36.55 J
Thus, the kinetic energy of the pendulum at position 2 is 36.55 J.
We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.