Typically when we think about extreme weather, we think about the effect of weather on humans and other life forms. However, weather events also greatly impact non-living things. Freeze and thaw cycles tend to break up rocks, weathering them physically. Landscape erosion can be greatly enhanced by storms because rivers and streams are able to transport larger amounts and larger sizes of material than they otherwise would, due to faster flow velocities. Sand at beaches is carried away by strong storms until it can be replenished over time. Sediments become hydrated during rainfall events, which can result in landslides and land movement. Many of these processes can create hazards for humans, but the physical landscape is very much shaped by extreme weather events. Weather is weather, which is nonliving. Erosion is affected by weather, the more rain there is, the more erosion. The more temperatures change, the more erosion because things swell as they warm up and shrink as they cool off, which can cause them to break.
Hurricane affects come from both wind and water impacts. Wind and waves break coral, damaging it or forcing it on shore and disrupting the ocean ecosystem. Fish and benthic organisms face turbulent conditions due to waves and wind. ... Winds dislocate sea and migratory birds caught in the eye of the storm.
Some examples of non-living things include rocks, water, weather, climate, and natural events such as rockfalls or earthquakes. Living things are defined by a set of characteristics including the ability to reproduce, grow, move, breathe, adapt or respond to their environment. Extreme heat causes lakes and rivers to dry up. Some kinds of earth can also dry up so much that it gets cracked.
Extreme rainfall causes floods and landslides.
Extreme cold can cause rocks to break, when the water that leaked into cracks in the rock freezes and expands.
If I knew more about the water cycle, I might be able to tell you more about how extreme weather affects clouds and other parts of the water cycle.
Phototropism refers to the movement of of plant body or parts towards or away from the light. There are two types of phototropism i. e. positive phototropism and negative phototropism.
In positive phototropism, the parts of plant body moves toward light. Movements of radical in the upward direction after seed emergence is the example of positive phototropism.
In negative phototropism, the body part of plant moves away from the light. Roots are the example of negative phototropism.
The nervous system is composed predominantly of neural tissue.
Explanation: Anatomist study anatomy, the study of the structure of organisms or their parts. By observing the structure of the nervous system, anatomist will tell that it is composed predominantly of neural tissue. So, he observed the structure of one part of an organism.