Answer: 4,280
Step-by-step explanation:
Hi
Answer:
The vertex of the parabola = (-7 , -4)
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the parabola y = 4 x² + 56 x +192
y = 4 (x² + 14 x + 48 )
y = 4 ( x² + 2 × 7 (x) + 49-1)
y = 4 ( x² + 2 × 7 (x) + 49)- 4
we apply the formula
(a +b)² = a² + 2ab + b²
y = 4 ( x + 7 )² - 4
<u>Step(ii):-</u>
<em>The general form of the parabola in algebraically</em>
<em> y = a ( x-h)² +k</em>
<em>The equation </em>
<em> y = 4 ( x + 7 )² - 4</em>
y = 4 ( x-(-7))² - 4
The vertex of the parabola (h,k) = (-7 , -4)
<u>Final answer:-</u>
The vertex of the parabola = (-7 , -4)
Answer:
Hey Dude....
Step-by-step explanation:
This is ur answer.....
<h3><em>(a) Six</em></h3><h3><em>(a) Six(b) 120</em></h3><h3><em>(a) Six(b) 120(c) 720</em></h3>
Hope it helps!
Brainliest pls!
Follow me! :)
Answer: The vertex of the parabola (quadratic function) is (-2,-4)
Fourth option: (-2,-4)
Solution:
y=x^2+4x
y=ax^2+bx+c; a=1, b=4, c=0
Vertex: V=(h,k)
h=-b/(2a)
h=-4/(2(1))
h=-4/2
h=-2
y=x^2+4x
k=y=h^2+4h
k=(-2)^2+4(-2)
k=4-8
k=-4
Vertex: V=(h,k)
Vertex: V=( -2, -4)