Answer:
C. It is converted into another form, mainly kinetic energy
Explanation:
Potential energy is energy available to be used in an object that isn't currently moving. When an object begins moving, potential energy becomes kinetic energy.
45✖️77 and then you will get your answer
Answer:
3,200,000,000 J
Explanation:
Work is defined as the amount of energy transferred as an object is moved a certain distance with a certain force. Mathematically, we express this with the equation

where W is work (measured in joules), F is the force applied (in Newtons), and s is the distance, also called the <em>displacement </em>(in meters).
Here, we have F = 1,600,000 N and s = 2000 m, so our work will be
J
Answer:
k_2 = 7.815 * 10^-3 s^-1
Explanation:
Given:
- rate constant of reaction k_1 = 7.8 * 10^-3 s^-1 @ T_1 = 25 C
- rate constant of reaction k_2 = ? @ T_2 = 75 C
- The activation energy E_a = 33.6 KJ/mol
- Gas constant R = 8.314472 KJ / mol . K
Find:
- rate of reaction k_2 @ T_2 = 75 C
Solution:
- we will use a combined form of Arrhenius equations that relates rate constants k as function of E_a and temperatures as follows:
k_2 = k_1 * e ^ [(E_a / R) * ( 1 / T_1 - 1 / T_2 )
- Evaluate k_2 = 7.8 * 10^-3* e^[(33.6 / 8.314472)*(1/298 -1/348)
- Hence, k_2 = 7.815 * 10^-3 s^-1