Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
Current.A moving charge is an object that changes position to one particular obsever.
Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²
Answer:

Explanation:
We are asked to find the final velocity of the boat.
We are given the initial velocity, acceleration, and time. Therefore, we will use the following kinematic equation.

The initial velocity is 2.7 meters per second. The acceleration is 0.15 meters per second squared. The time is 12 seconds.
= 2.7 m/s - a= 0.15 m/s²
- t= 12 s
Substitute the values into the formula.

Multiply the numbers in parentheses.




Add.

The final velocity of the boat is <u>4.5 meters per second in the positive direction.</u>
A gravitational force between objects depends on two things- their masses and the distance between them. So the greater the mass and the less distance there is, the more gravitational force and is the mass is less and the distance is great the gravitational force is weak