X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
I got A, -32, but it has been awhile since I have learned this in my math class. You might want to wait for someone else to verify this answer.
Factorization: (x + 4)∧2=0
Solutions based on Factorization: x + 4 = 0 ⇒ X∨1 = X∨2 = -4
If he ate 6/8 of the pizza, that means 2/8 is left.
2/8 simplify it, by dividing it by 2 and your answer is...
IT'S 1/4
Factorize x²+7x+12 ===> (x+3)(x+4)
Factorize x²-3x-28 ===> (x-7)(x+4)
4x + 12 can be written====> 4(x+3)
Then the question could be written as follows:
[(x+3)(x+4) / (x-7)(x+4) ] / 4(x+3) = [(x+3)(x+4) / (x-7)(x+4) ].[4(x+30]
After simplification you get 1 / 4(x-7)