Answer:
2.8 x 10²³ molecules H₂O
1.4 x 10²³ molecules O₂
Explanation:
First, you will need the balanced chemical equation for the formation of water:
2H₂ + O₂ -> 2H₂O
This will help in determining the mole ratios between water and oxygen, which we will need later.
Let's first calculate the number of H₂O (water) molecules. This will require stoichiometry. We are also given the mass, so we must convert mass into moles, then moles into molecules. mass -> moles -> molecules
8.5 g H₂O x (1 mol H₂O/18.01528 g H₂O) x (6.02 x 10²³ molecules H₂O/1 mol H₂O) = 2.8404 x 10²³ molecules H₂O
Rounded to 2 significant digits: 2.8 x 10²³ molecules H₂O
Now, to find the molecules of water, we can begin with the same stoichiometric equation, but before we convert to molecules, we will have to convert moles of water to moles of oxygen. This is where we will use the mole ratio of water to oxygen we got from the balanced chemical equation earlier. 2H₂O:1O₂
8.5 g H₂O x (1 mol H₂O/18.01528 g H₂O) x (1 mol O₂/2 mol H₂O) x (6.02 x 10²³ molecules O₂/1 mol O₂) = 1.4202 x 10²³ molecules O₂
Rounded to 2 significant digits: 1.4 x 10²³ molecules O₂
Take the molar mass of U and add it to the molar mass of F(3).
Answer:
Check the explanation
Explanation:
functional group found in the major organic product = alpha -beta unsaturated ketone
Reaction used to form this functional group = Michael condensation reaction
Also other reactions are - Aldol condensation , Robinson annulation reaction.
Kindly check the attached image below to see the step by step solution to the question above.
Answer:
= 0.3 moles
Comment if you need step to step explanation.
7.20594 x 10^20
First you must determine how many moles of P3O5 you have. This is done by using the formula
Number of moles (n) = mass in grams of substance (m) /divided by/ Molar mass (M) [this is the sum of the atomic mass of all atoms in the compound]
n = 0.170 / P (31 x 2) + O (16 x 5)
n = 0.170 / 142
n = 0.001197 moles
Then you use avagadros number 6.02 x10^23 this is the number of atoms in one mole of any substance. Since you have 0.001197 moles you multiply the number of moles by avagadros number
0.001197 x (6.02 x 10^23)
= 7.20594 x 10^20 atoms