Answer:
a) 3/64 = 0.046 (4.6%)
b) 63/64 = 0.9843 (98.43%)
c) 1/64 = 0.015 (1.5%)
d) 1/4 = 0.25 (25%)
Step-by-step explanation:
in order to verify that the f(x) is a probability mass function , then it should comply the requirement that the sum of probabilities over the entire space of x is equal to 1. Then
∑f(x)*Δx = 1
if f(x)=(3/4)(1/4)^x , x = 0, 1, 2, ...
then Δx=1 and
∑f(x) = (3/4)∑(1/4)^x = (3/4)* [ 1/(1-1/4)] = (3/4)*(4/3) = 1
then f represents a probability mass function
a) P(X = 2)= f(x=2) = (3/4)(1/4)^2 = 3/64 = 0.046 (4.6%)
b) P(X ≤ 2) = ∑f(x) = f(x=0)+ f(x=1) + f(x=2) = (3/4) + (3/4)(1/4) + 3/64 = 63/64 = 0.9843 (98.43%)
c) P(X > 2)= 1- P(X ≤ 2) = 1 - 63/64 = 1/64 = 0.015 (1.5%)
d) P(X ≥ 1) = 1 - P(X < 1) = 1 - f(x=0) = 1- 3/4 = 1/4 = 0.25 (25%)
The expression that is equivalent to the given expression where the expression is given as (18)2⋅(19)2 is (18 * 19)^2
<h3>How to determine which expression is equivalent to the given
expression? </h3>
The expression is given as
(18)2⋅(19)2
Rewrite the above expression properly
So, we have
(18)^2 * (19)^2
The factors in the above expression have the same exponent.
So, the expression can be rewritten as
(18 * 19)^2
Hence, the expression that is equivalent to the given expression where the expression is given as (18)2⋅(19)2 is (18 * 19)^2
Read more about equivalent expression at
brainly.com/question/2972832
#SPJ1
Answer:
6-2y=4y+8
since you show x through y
Answer:
The result that is obtained on comparing the system of equations in order to get the solution to the system of equations is:
6 -2y =4y + 8
Step-by-step explanation:
We are given a system of equations in term of variable x and y as follows:
x + 2y = 6 --------(1)
x - 4y = 8-------------(2)
From equation (1) we have the value of x in terms of y as:
x=6-2y
From equation (2) we have the value of x in terms of y as:
x=8+2y
Hence, on equation the above two values of 'x' we obtain:
6 - 2y = 4y + 8
ghope this helps
Answer:
62/100 but simplified is 32/50
Answer:
every 2 years
Step-by-step explanation:
since it is t/2 for the exponent - thas the answer on khan