Answer:
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 38 minutes, standard deviation of 4.5 minutes.
Determine the interval that represents the middle 68% of her commute times.
Within 1 standard deviation of the mean. So
38 - 4.5 = 33.5 minutes
38 + 4.5 = 42.5 minutes.
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Answer:
x=1/4
Step-by-step explanation:
Answer:
x = -1
Step-by-step explanation:
1. Simplifying
6x + 4 = 4x + 2
2. Reorder the terms
4 + 6x = 4x + 2 to 4 + 6x = 2 + 4x
3. Solving
4 + 6x = 2 + 4x
4. Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right. Then add '-4x' to each side of the equation.
4 + 6x + -4x = 2 + 4x + -4x
5. Combine like terms: 6x + -4x = 2x
4 + 2x = 2 + 4x + -4x
6. Combine like terms: 4x + -4x = 0
4 + 2x = 2 + 0
4 + 2x = 2
7. Add '-4' to each side of the equation.
4 + -4 + 2x = 2 + -4
8. Combine like terms: 4 + -4 = 0
0 + 2x = 2 + -4
2x = 2 + -4
9. Combine like terms: 2 + -4 = -2
2x = -2
10. Divide each side by '2'.
x = -1
11. Simplifying
x = -1
D because ugh I don’t feel like explaining
Answer:
75 degrees
Step-by-step explanation:
The corresponding angle is 75 degrees