.27 repeating.... you have to put three on the inside and 11 outside, so 11 goes into 3 zero times so put a zero at the top. Write a zero underneath and subtract 3-0 (obviously 3) and put a decimal point after the first three under the sign and the 0 above it. Add a zero after the threes decimal, and carry it down to the bottom most 3 to have 30. 11 goes into 30 two times so write a 2 at the top. Subtract the 30-22 at the bottom and get 8. Add another 0 after the 3 ( so now 3.00) and carry it to the 8 (80). 11 goes in 7 times, 77. So 7 on top and 80-77= 3 below. Add another zero to repeat process if necessary, but otherwise it repeats, just so you know ;) hope this helps
Answer:
B. 103°
Step-by-step explanation:
Supplementary angles add up to 180°, so we can find the measure of angle 2 by subtracting 77 from 180
180 - 77
= 103
So, m∠2 is 103°
Answer:
a. H0 : p ≤ 0.11 Ha : p >0.11 ( one tailed test )
d. z= 1.3322
Step-by-step explanation:
We formulate our hypothesis as
a. H0 : p ≤ 0.11 Ha : p >0.11 ( one tailed test )
According to the given conditions
p`= 31/225= 0.1378
np`= 225 > 5
n q` = n (1-p`) = 225 ( 1- 31/225)= 193.995> 5
p = 0.4 x= 31 and n 225
c. Using the test statistic
z= p`- p / √pq/n
d. Putting the values
z= 0.1378- 0.11/ √0.11*0.89/225
z= 0.1378- 0.11/ √0.0979/225
z= 0.1378- 0.11/ 0.02085
z= 1.3322
at 5% significance level the z- value is ± 1.645 for one tailed test
The calculated value falls in the critical region so we reject our null hypothesis H0 : p ≤ 0.11 and accept Ha : p >0.11 and conclude that the data indicates that the 11% of the world's population is left-handed.
The rejection region is attached.
The P- value is calculated by finding the corresponding value of the probability of z from the z - table and subtracting it from 1.
which appears to be 0.95 and subtracting from 1 gives 0.04998
y-3=3(x+1)
opening the bracket
y-3=3x+3
y=3x+3+3
equation of the line in the form y=mx+c;
y=3x+6
therefore gradient=3
parallel lines have same gradient therefore gradient of the other line is 3
y--3/x-0=3
y+3=3(x-0)
y+3=3x-0
y=3x-3.
We have been given that the distribution of the number of daily requests is bell-shaped and has a mean of 38 and a standard deviation of 6. We are asked to find the approximate percentage of lightbulb replacement requests numbering between 38 and 56.
First of all, we will find z-score corresponding to 38 and 56.


Now we will find z-score corresponding to 56.

We know that according to Empirical rule approximately 68% data lies with-in standard deviation of mean, approximately 95% data lies within 2 standard deviation of mean and approximately 99.7% data lies within 3 standard deviation of mean that is
.
We can see that data point 38 is at mean as it's z-score is 0 and z-score of 56 is 3. This means that 56 is 3 standard deviation above mean.
We know that mean is at center of normal distribution curve. So to find percentage of data points 3 SD above mean, we will divide 99.7% by 2.

Therefore, approximately
of lightbulb replacement requests numbering between 38 and 56.