B. Light refracts as it passes through a lens.
The bending of a ray of light also occurs when light passes into and out of a glass lens. ... Because a convex lens can cause rays of light to converge, it can produce an image on a screen.
Answer:
https://www.chegg.com/homework-help/questions-and-answers/part-20-cm-long-stick-m-0400-kg-lifted-rope-tied-70-cm-upper-end-end-touches-smooth-floor--q81268572
Answer:
The initial speed of the ball was 26.2 m/s
Explanation:
When the football player is in the air at his maximum height the vertical component of velocity is zero, To obtain the horizontal velocity when the player catches the ball we need to apply the linear momentum conservation theorem:

we need to obtain the time taken to go down.

We have a horizontal displacement and the time taken to stop, so:

so:

The resultant vector is 5.2 cm at a direction of 12⁰ west of north.
<h3>
Resultant of the two vectors</h3>
The resultant of the two vectors is calculated as follows;
R = a² + b² - 2ab cos(θ)
where;
- θ is the angle between the two vectors = 45° + (90 - 57) = 78⁰
- a is the first vector
- b is the second vector
R² = (3.7)² + (4.5)² - (2 x 3.7 x 4.5) cos(78)
R² = 27.02
R = 5.2 cm
<h3>Direction of the vector</h3>
θ = 90 - 78⁰
θ = 12⁰
Thus, the resultant vector is 5.2 cm at a direction of 12⁰ west of north.
Learn more about resultant vector here: brainly.com/question/28047791
#SPJ1
Answer:
100 m/s
Explanation:
Mass the mass of Bond's boat is m₁. His enemy's boat is twice the mass of Bond's i.e. m₂ = 2 m₁
Initial speed of Bond's boat is 0 as it won't start and remains stationary in the water. The initial speed of enemy's boat is 50 m/s. After the collision, enemy boat is completely stationary. Let v₁ is speed of bond's boat.
It is the concept of the conservation of momentum. It remains conserved. So,

Putting all the values, we get :

So, Bond's boat is moving with a speed of 100 m/s after the collision.