It is important to properly balance a centrifuge because an unbalanced machine can damage the rotor, cause catastrophic damage to the machine itself, or even injure or kill lab personnel working in the room. Balancing a centrifuge involves spreading the weight of the samples across the entire rotor.
<h2>Answer: Medium
</h2>
The medium is the main factor that differentiates a mechanical wave from an electromagnetic wave, since the first can not propagate without its existence, while the second can propagate regardless of whether the medium exists or not.
In addition, it is the medium that will define, the propagation speed of the wave, according to its specific physical characteristics.
Therefore, the <u>correct answer</u> is a.
Answer:
The answer for a classical particle is 0.00595
Explanation:
The equation of the wave function of a particle in a box in the second excited state equals:
ψ(x) = ((2/L)^1/2) * sin((3*pi*x)/L)
The probability is equal to:
P(x)dx = (|ψ(x)|^2)dx = ((2/L)^1/2) * sin((3*pi*x)/L) = (2/L) * sin^2((3*pi*x)/L) dx
for x = 0.166 nm
P(x)dx = (2/0.167) * sin^2((3*pi*0.166)/0.167) * 100 pm = 0.037x10^-3
for x = 0.028 nm
P(x)dx = (2/0.167) * sin^2((3*pi*0.028)/0.167) * 100 pm = 11x10^-3
for x = 0.067 nm
P(x)dx = (2/0.167) * sin^2((3*pi*0.067)/0.167) * 100 pm = 3.99x10^-3
therefore, the classical probability is equal to:
(1/L)dx = (1/0.167)*100 pm = 0.00595
Answer:
1. C: 31/14 Si becomes 31/15 because a nuetron
2. A: 238 92U because the very long half-life means a very small rate of decay
3. D: Charge conservation is not satisfied
4. B: of the four nuclear decay processes only the α-decay changes the baryon number and does so in increments of four
Explanation:
I just took the quick check. Enjoy the answers I did not get to have