The correct answer is a. This is because the pH of a solution is defined as -log10(concentration of H+ ions). An inverse logarithmic scale such as this means that a solution with a lower concentration of H+ ions will have a higher pH than one with a higher concentration. Therefore we know that the pH of the second sample will be higher than the first.
Since the logarithmic scale has the base 10, a change by 1 on the scale is a consequence of multiplication/division of the H+ concentration by a factor of 10. As the scale is inverse, this means that a decrease of concentration by factor 1000 is equivalent to increasing the pH by (1000/10) = 3.
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Answer:
Phenols do not exhibit the same pka values as other alcohols;
They are generally more acidic.
Using the knowledge that hydrogen acidity is directly related to the stability of the anion formed, explain why phenol is more acidic than cyclohexane.
Explanation:
According to Bromsted=Lowry acid-base theory,
an acid is a substance that can release
ions when dissolved in water.
So, acid is a proton donor.
If the conjugate base of an acid is more stable then, that acid is a strong acid.
In the case of phenol,
the phenoxide ion formed is stabilized by resonance.

The resonance in phenoxide ion is shown below:
Whereas in the case of cyclohexanol resonance is not possible.
So, cyclohexanol is a weak acid compared to phenol.
Energy= 2381 joules
heat= Mass(kg) *change in temperature(K) * Cp
2381=0.155*(15)*Cp
Cp=1024 J/kg K
Answer:
B. It is a nonliving resource.
Explanation:
The definition of abiotic is "nonliving," and examples of abiotic resources may include soil or water.