Answer:
A toilet requires a large amount of cold water to flush. So, when the toilet flushes while you're in the shower, it's stealing from your shower's cold water supply. When the pressure-balancing valve senses the drop in cold water pressure, it responds by restricting the hot water pressure.
Answer:
H₂O is the limiting reactant
Theoretical yield of 240 g Al₂O₃ and 14 g H₂
Explanation:
Find how many moles of one reactant is needed to completely react with the other.
6.5 mol Al × (3 mol H₂O / 2 mol Al) = 9.75 mol H₂O
We need 9.75 mol of H₂O to completely react with 6.5 mol of Al. But we only have 7.2 mol of H₂O. Therefore, H₂O is the limiting reactant.
Now find the theoretical yield:
7.2 mol H₂O × (1 mol Al₂O₃ / 3 mol H₂O) × (102 g Al₂O₃ / mol Al₂O₃) ≈ 240 g Al₂O₃
7.2 mol H₂O × (3 mol H₂ / 3 mol H₂O) × (2 g H₂ / mol H₂) ≈ 14 g H₂
Since the data was given to two significant figures, we must round our answer to two significant figures as well.
Chemical properties can be determined by heat combustion, how they react with other chemicals, Oxidization (lose electrons, losing hydrogen, gaining oxygen), or toxicity.
The number of electrons it take to fill the mos formed from the combination of the 3s orbitals of two atoms simply is 14 electrons.
<h3>How electrons are distributed in the 3s orbitals.</h3>
The 3s orbital possess two different spherical nodes which is highly connected with the principal quantum number. In order words, it has 2 radial nodes. Also the shape of the 3s orbital is spherical in shape.
That being said, from the context of the above given task, the number of electrons which fill the mos formed from the combination of the 3s orbitals of two atoms is fourteen electrons.
However, the electron configuration of an atom simply is the arrangement of electrons in the electron shell or orbit of the atom of that element.
In conclusion, it can be deduced from above s orbital has a maximum of two electrons and this energy increases as the orbitals increases.
Read more on electron:
brainly.com/question/860094
#SPJ1