The cube-shaped box has a volume of 216 cubic inches. The rectangular box has a volume of 160 cubic inches. Therefore, the answer is C) 56 cubic inches.
Answer:

Step-by-step explanation:
Perimeter of the rhombus, STAR, is the sum of the length of all it's 4 sides.
The coordinates of its vertices are given as,
S(-1, 2)
T(2, 3)
A(3, 0)
R(0, -1)
Length of each side can be calculated using the distance formula given as 
Find the length of each side ST, TA, AR, RS, using the above formula by plugging in the coordinate values (x, y) of each vertices.

S(-1, 2) => (x1, y1)
T(2, 3) => (x2, y2)



T(2, 3) => (x1, y1)
A(3, 0) => (x2, y2)



A(3, 0) => (x1, y1)
R(0, -1) => (x2, y2)



R(0, -1) => (x1, y1)
S(-1, 2) => (x2, y2)




Answer:
(A)∠A = 82.2°,∠C = 62.8°, c = 17.1
Step-by-step explanation:
In Triangle ABC
∠B=35°
a=19
b=11
Using Law of SInes
![\dfrac{a}{\sin A} =\dfrac{b}{\sin B} \\\dfrac{19}{\sin A} =\dfrac{11}{\sin 35^\circ} \\11*\sin A=19*\sin 35^\circ\\\sin A=(19*\sin 35^\circ) \div 11\\A= \arcsin [(19*\sin 35^\circ) \div 11]\\A=82.2^\circ](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7Bb%7D%7B%5Csin%20B%7D%20%5C%5C%5Cdfrac%7B19%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7B11%7D%7B%5Csin%2035%5E%5Ccirc%7D%20%5C%5C11%2A%5Csin%20A%3D19%2A%5Csin%2035%5E%5Ccirc%5C%5C%5Csin%20A%3D%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5C%5CA%3D%20%5Carcsin%20%5B%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5D%5C%5CA%3D82.2%5E%5Ccirc)
Now:
![\angle A+\angle B+\angle C=180^\circ\\35^\circ+82.2^\circ+\angle C=180^\circ\\\angle C=180^\circ-[35^\circ+82.2^\circ]\\\angle C=62.8^\circ](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C35%5E%5Ccirc%2B82.2%5E%5Ccirc%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C%5Cangle%20C%3D180%5E%5Ccirc-%5B35%5E%5Ccirc%2B82.2%5E%5Ccirc%5D%5C%5C%5Cangle%20C%3D62.8%5E%5Ccirc)
Using Law of Sines

Therefore:
∠A = 82.2°,∠C = 62.8°, c = 17.1
The correct option is A.
Answer:
The method is to multiply the numbers by there varible
Step-by-step explanation: