Answer:
0
Step-by-step explanation:
when the term has a coefficient of, it does not have to be written.
x- X/1
The sum of two opposites equals o
So the solution would be o
Answer:it is no solution because the two lines don’t touch which means you can’t have points.
Step-by-step explanation:
Answer:
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis. ⇒ False
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis. ⇒ False
Step-by-step explanation:
<em>Let us explain the reflection about the axes</em>
- If a graph is reflected about the x-axis, then the y-coordinates of all points on it will opposite in sign
Ex: if a point (2, -3) is on the graph of f(x), and f(x) is reflected about the x-axis, then the point will change to (2, 3)
- That means reflection about the x-axis change the sign of y
- y = f(x) → reflection about x-axis → y = -f(x)
- If a graph is reflected about the y-axis, then the x-coordinates of all points on it will opposite in sign
Ex: if a point (-2, -5) is on the graph of f(x), and f(x) is reflected about the y-axis, then the point will change to (2, -5)
- That means reflection about the y-axis change the sign of x
- y = f(x) → reflection about y-axis → y = f(-x)
<em>Now let us answer our question</em>
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis.
It is False because reflection about x-axis change sign of y
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis.
It is False because reflection about y-axis change sign of x
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the y-axis
Answer:
.026
Step-by-step explanation:
Each time they assume the sum<span> is </span>rational<span>; however, upon rearranging the terms of their equation, they get a contradiction (that an </span>irrational number<span> is equal to a </span>rational number<span>). Since the assumption that the </span>sum of a rational<span> and </span>irrational number<span> is </span>rational<span>leads to a contradiction, the </span>sum<span> must be </span>irrational<span>.</span>