Answer:
The answer is below
Step-by-step explanation:
Given that mean (μ) = 23 hours, standard deviation (σ) = 10 hours
a) The population is a group of self employed home based workers while the variable is the number of hours worked per week.
b) The mean of the distribution of sample means (also known as the Expected value of M) is equal to the population mean μ.
The standard deviation of the distribution of sample means is called the Standard Error of M, it is given by:
c)
d) The sample size has no effect on the mean, hence increasing the sample size does not change the mean.
The square root of sample size is inversely proportional to the standard deviation therefore increasing the sample size reduces the standard deviation.
Answer:
she made electronic calculating machines in order to calibrate rockets and make everything more precise
Step-by-step explanation:
Answer:
, ig
Step-by-step explanation:
Answer:
7. r = -5
8. x = -1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
r + 2 - 8r = -3 - 8r
<u>Step 2: Solve for </u><em><u>r</u></em>
- Combine like terms: -7r + 2 = -3 - 8r
- Add 8r to both sides: r + 2 = -3
- Subtract 2 on both sides: r = -5
<u>Step 3: Check</u>
<em>Plug in r into the original equation to verify it's a solution.</em>
- Substitute in <em>r</em>: -5 + 2 - 8(-5) = -3 - 8(-5)
- Multiply: -5 + 2 + 40 = -3 + 40
- Add: -3 + 40 = -3 + 40
- Add: 37 = 37
Here we see that 37 does indeed equal 37.
∴ r = -5 is a solution of the equation.
<u>Step 4: Define equation</u>
-4x = x + 5
<u>Step 5: Solve for </u><em><u>x</u></em>
- Subtract <em>x</em> on both sides: -5x = 5
- Divide -5 on both sides: x = -1
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: -4(-1) = -1 + 5
- Multiply: 4 = -1 + 5
- Add: 4 = 4
Here we see that 4 does indeed equal 4.
∴ x = -1 is a solution of the equation.