Answer:
0.546 , -4.71
Step-by-step explanation:
Given:
An angle's initial ray points in the 3-o'clock direction and its terminal ray rotates counter -clock wise.
Here, Slope = tan\theta
If θ = 0.5
Then, Slope = tan(θ) = tan(0.5) = 0.546
If θ = 1.78
Then, Slope = tan(θ) = tan(1.78) = - 4.71
The expression (in terms of θ) that represents the varying slope of the terminal ray.
Slope = m = tanθ, where θ is the varying angle
Answer:
Ste-by-step explanation:bf=7x-10 bc=4x-29
Usually one will differentiate the function to find the minimum/maximum point, but in this case differentiating yields:

which contains multiple solution if one tries to solve for x when the differentiated form is 0.
I would, though, venture a guess that the minimum value would be (approaching) 5, since the function would be undefined in the vicinity.
If, however, the function is

Then differentiating and equating to 0 yields:

which gives:

or

We reject x=5 as it is when it ix the maximum and thus,

, for
The answer would be you can’t simplify the first one but the second would be 15 square root 5
Hope this helps
Have a great day/night
Feel free to ask any questions