Answer:
You arrive home after driving 3 hours and 40 minutes.
Step-by-step explanation:
Answer:
x has to be less than 3
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
To turn a fraction into a percent, you divide the numerator by the denominator.
8 divided by 9 = .8 repeated
To turn it into a percent, you move the decimal to the right 2 spaces.
.8 turns into 88.8 repeated
Then you round to the nearest hundredth
88.8 repeated rounds to 88.89.
Answer:
Column A Column B
1. x² + 6x + 8 x-3,x+2
2. x³ - 7x + 6 x+1, x+2, x+3
3. x³ - 2x² - 5x + 6 x-1, x+2, x-3
Step-by-step explanation:
Column A Column B
1. x² + 6x + 8 x-3,x+2
2. x³ - 7x + 6 x+1, x+2, x+3
3. x³ - 2x² - 5x + 6 x-1, x+2, x-3
Using Factor theorem we put values of x = ±1,±2,±3 in each of the polynomials unless we get a zero.
1. x² + 6x + 8
= 1+6(1) +8= 15
1. x² + 6x + 8
4+ 12+8 = 24
1. x² + 6x + 8
(-1)² + 6(-1)+ 8
= 1-6+8= 3
1. x² + 6x + 8
(-2)² + 6(-2)+ 8
= 4-12+8= 0
1. x² + 6x + 8
(3)²+ 6(3) +8
= 9+18+8 ≠ 0
1. x² + 6x + 8
(-3)²+ 6(-3) +8
= 9-18+8 =-1
For this polynomial we have x+2= 0 or x=-2, x-3= 0 , x=3
2. x³ - 7x + 6
1-7+6= 0
2. x³ - 7x + 6
(-1)³-7(-1) +6
= 13-1≠0
2. x³ - 7x + 6
(2)³-7(2) +6
= 8-14+6= 0
2. x³ - 7x + 6
(-2)³-7(-2) +6
= -8 +14+6
2. x³ - 7x + 6
(-3)³-7(-3) +6
= -27+21+6 = 0
For this polynomial we have x+1= 0 , x+2 = 0 and x+3= 0, or x=-1,-2,-3
3. x³ - 2x² - 5x + 6
(1)³-2(1)²-5(1)+6
= 0
3. x³ - 2x² - 5x + 6
(-1)³-2(-1)²-5(-1)+6
= -1 -2 +5+6
=8
3. x³ - 2x² - 5x + 6
(2)³-2(2)²-5(2)+6
= 8-8-10+6
=-4
3. x³ - 2x² - 5x + 6
(-2)³-2(-2)²-5(-2)+6
= -8-8+10+6
=0
3. x³ - 2x² - 5x + 6
(3)³-2(3)²-5(3)+6
= 27-18-15+6
=0
3. x³ - 2x² - 5x + 6
(-3)³-2(-3)²-5(-3)+6
= -27-18+15+6
=-14
For this polynomial we have x-1= 0 ,x+2=0, x-3= 0or x=1,-2,3
The key features of
polynomials are the vertex, axis of symmetry, x and y intercepts.
<span>1.
</span>The degree will help you find the end behavior.
<span>2. </span>The vertex shows you where it changes concavity.
<span>3. </span>X and y intercepts give you a couple of points
of reference.
<span>4. </span>Axis of symmetry is only applicable to even
degree polynomials.
I am hoping that these answers
have satisfied your queries and it will be able to help you in your endeavors, and
if you would like, feel free to ask another question.