The inequality is
![7- \frac{2}{b}\ \textless \ \frac{5}{b}](https://tex.z-dn.net/?f=7-%20%5Cfrac%7B2%7D%7Bb%7D%5C%20%5Ctextless%20%5C%20%5Cfrac%7B5%7D%7Bb%7D)
write 7 as 7b/b to have all the expressions in common denominator:
![\frac{7b}{b} - \frac{2}{b}\ \textless \ \frac{5}{b}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7b%7D%7Bb%7D%20-%20%5Cfrac%7B2%7D%7Bb%7D%5C%20%5Ctextless%20%5C%20%5Cfrac%7B5%7D%7Bb%7D)
![\frac{7b-2}{b} \ \textless \ \frac{5}{b}](https://tex.z-dn.net/?f=%5Cfrac%7B7b-2%7D%7Bb%7D%20%5C%20%5Ctextless%20%5C%20%5Cfrac%7B5%7D%7Bb%7D)
![\frac{7b-2}{b}- \frac{5}{b}\ \textless \ 0](https://tex.z-dn.net/?f=%5Cfrac%7B7b-2%7D%7Bb%7D-%20%5Cfrac%7B5%7D%7Bb%7D%5C%20%5Ctextless%20%5C%200)
![\frac{7b-2-5}{b}\ \textless \ 0](https://tex.z-dn.net/?f=%5Cfrac%7B7b-2-5%7D%7Bb%7D%5C%20%5Ctextless%20%5C%200)
![\frac{7b-7}{b}\ \textless \ 0](https://tex.z-dn.net/?f=%5Cfrac%7B7b-7%7D%7Bb%7D%5C%20%5Ctextless%20%5C%200)
![\frac{7(b-1)}{b}\ \textless \ 0](https://tex.z-dn.net/?f=%5Cfrac%7B7%28b-1%29%7D%7Bb%7D%5C%20%5Ctextless%20%5C%200)
here b=1 is a root and b=0 is not in the domain of the expression, but it still has an effect in the sign of the expression.
the sign table of
![\frac{7(b-1)}{b}](https://tex.z-dn.net/?f=%5Cfrac%7B7%28b-1%29%7D%7Bb%7D%20)
is :
+++++++[0] --------[1] +++++
this means that for values of b to the left of 0 and to the right of 1, the expression is positive, and for values of b in (0, 1), the expression is negative.
that is
![\frac{7(b-1)}{b}\ \textless \ 0](https://tex.z-dn.net/?f=%5Cfrac%7B7%28b-1%29%7D%7Bb%7D%5C%20%5Ctextless%20%5C%200%20)
for b∈(0, 1)
Answer: (0, 1)
D. is the answer :))))))))))))))))
Answer:
the answer is 678
Step-by-step explanation: a little trick you can do is if there is a zero at the end of a number and your dividing just remove the 0. Or just do 6780/10