Answer:

Step-by-step explanation:
![\huge \sqrt[3]{9 {x}^{4} } . \sqrt[3]{3 {x}^{8} } \\ \\ \huge = \sqrt[3]{9 {x}^{4} \times 3 {x}^{8} } \\ \\\huge = \sqrt[3]{27 {x}^{12} } \\ \\ \huge\orange{= 3 {x}^{4} }](https://tex.z-dn.net/?f=%5Chuge%20%5Csqrt%5B3%5D%7B9%20%7Bx%7D%5E%7B4%7D%20%7D%20.%20%20%5Csqrt%5B3%5D%7B3%20%7Bx%7D%5E%7B8%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Chuge%20%3D%20%20%5Csqrt%5B3%5D%7B9%20%7Bx%7D%5E%7B4%7D%20%5Ctimes%203%20%7Bx%7D%5E%7B8%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%5Chuge%20%20%3D%20%20%5Csqrt%5B3%5D%7B27%20%7Bx%7D%5E%7B12%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Chuge%5Corange%7B%3D%203%20%7Bx%7D%5E%7B4%7D%20%7D)
Answer:
17/18
Step-by-step explanation:
2
/18 + 15
/18
= 2
/18 + 15/
18
= 2+15
/18
= 17
/18
15376
/ I
961 16
/ I / I
31 31 4 4
31 × 4 = 124
The square root of 15376 is 124
<em><u>Question:</u></em>
A jeweler is dividing 3/8 of a pound of rubies among 4 lots. What part of a pound will each lot weigh? A.1/4 B.1/8 C.1/16 D.3/32
<em><u>Answer:</u></em>
Option D
Each lot weight
part of pound
<em><u>Solution:</u></em>
Given that,
A jeweler is dividing 3/8 of a pound of rubies among 4 lots
To find: part of a pound each lot weigh
From given,

Let "x" be the part of a pound each lot weigh
Therefore,

This forms a proportion and solve by cross multiplying

Thus, each lot weight
part of pound
Answer:
£15.7
Step-by-step explanation:
32 cans x 50P = 1600p
1600p to Pounds = £26.66 (1600 divided by 60)
Remaining cans = 18 (50 - 32)
18 cans x 20p = 360p
360p to Pounds = £6 (360 divided by 60)
£26.66 + £6 = £32.66
£32.66 (Profit) - £17 (Cost of cans) = £15.66
15.66 to 3SF = 15.7